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‘What a useful thing a pocket-map is!’ I remarked.

‘That’s another thing we’ve learned from your Nation,’ said Mein Herr, ‘map-making. But

we’ve carried it much further than you. What do you consider the largest map that would

be really useful?’

‘About six inches to the mile.’

‘Only six inches!’ exclaimed Mein Herr. ‘We very soon got to six yards to the mile. Then

we tried a hundred yards to the mile. And then came the grandest idea of all! We actually

made a map of the country, on the scale of a mile to the mile!’

‘Have you used it much?’ I enquired.

‘It has never been spread out, yet,’ said Mein Herr: ‘the farmers objected: they said it

would cover the whole country, and shut out the sunlight! So we now use the country itself,

as its own map, and I assure you it does nearly as well.’

Lewis Carroll, from Sylvie and Bruno Concluded
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Abstract

Visual working memory, the process involved in actively maintaining visual information

over a short period of time, is essential for numerous everyday behaviors. A substantial

amount of research has gone into characterizing the exact nature of one of the defining

characteristics of visual working memory, its seemingly-counterintuitive limited capacity.

Typically, these studies involve testing the memory for the value of a feature of some num-

ber of stimuli (e.g., the orientation of one of four oriented stimuli). However, more recent

studies have shown that visual working memory holds more than just a point estimate of

a stimulus feature, implying that the previous methods investigating visual working mem-

ory limits are underestimating the capacity and flexibility of this process. In my disserta-

tion, I use psychophysical, computational, and neuroimaging methods to investigate how

people maintain and use two additional pieces of information: an item’s uncertainty, or

the knowledge of the noise associated with its memory, and its priority, or behavioral rele-

vance.

In the first chapter, I investigate uncertainty in working memory, showing that people

maintain an accurate representation of item-specific uncertainty over a delay and use it

optimally when deciding if a stimulus has changed in orientation. In the second chapter, I

investigate how priority is used in working memory, specifically asking how we allocate our

working memory resource across items with different priorities. I show that people allocate

resources consistent with a loss-minimizing strategy.

In the third chapter, I investigate both priority and uncertainty, replicating and extending

ix



findings from previous chapters. First, I show that people allocate resource in a way con-

sistent with a loss-minimizing strategy, even when incentivized to use a different strategy.

Second, I show that people maintain an item-specific representation of uncertainty, which

isn’t affected by priority information. Finally, I show that people use item-specific uncer-

tainty optimally when placing a wager about the accuracy of their memory.

In the final chapter, I ask how priority is represented in the brain during working mem-

ory. I find that, in visual areas, priority is maintained through the amount of delay-period

activity of the same neural populations maintaining each item’s location.

Together, my studies demonstrate different ways in which working memory maintains and

uses information that is helpful with interacting effectively with our environment.
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0 Introduction

The best thing since sliced bread is a bunch of stuff between sliced bread

Bon Appétit
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Working memory is responsible for actively storing and manipulating information for later

use (Baddeley & Hitch, 1974; Baddeley, 2003). It is positioned between perception and

cognition and is essential to behaviors as “simple” as integrating visual information across

saccades (so we can maintain a steady mental representation of the world) and as “com-

plex” as reading comprehension, problem solving, and decision making (Fukuda, Vogel,

Mayr, & Awh, 2010; Conway, Kane, & Engle, 2003; Just & Carpenter, 1992). Thus, it

is perhaps unsurprising that Schizophrenia, Parkinson’s, and old age are associated with

working memory deficits (J. Lee & Park, 2005; E.-Y. Lee et al., 2010; Park et al., 2002).

The goal of this chapter is to describe and define working memory, specifically visual work-

ing memory, in relation to this dissertation.

0.1 Sensory, long-term, and working memory

To help define (visual) working memory as it is used in this thesis, I want to first discuss

how it is different from sensory memory (also known as iconic memory), which it follows,

and long-term memory, which it precedes.

0.1.1 Sensory memory

A seminal study published by Sperling in 1960 demonstrated the difference between the

fragile but high-resolution sensory memory available immediately after perception, and

the more robust but lower-capacity working memory. Participants were briefly presented

a display containing 3-12 alphanumeric characters, arranged in one to three rows (e.g.,

one row of 3 or 6, three rows of four). There were two response conditions, whole report

and partial report. In the whole report condition, participants were instructed to report
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as many characters as they could from the entire display. In the partial report condition,

participants were probed to report as many characters from a subset of the entire display.

For example, a high, medium, or low auditory tone would be played and the participant

would respectively recall the remembered characters from the top, medium, or bottom

row of the display. The tone, and thus the row to report, was randomly selected. The

amount of time between the display presentation and the probe (i.e., the delay) varied as

well. Sperling found that, in the whole report condition, participants were able to recall at

most 4-5 items, regardless of the total number of characters in the display. In the partial

report condition, participants were able to report 3-4 items when the response tone was

played directly after stimulus presentation. Because participants were unaware of which

row would be probed for response (and thus would perform equally well for all rows), this

result suggested that participants had 9-12 items available in memory immediately after

viewing the display. However, this sensory memory was fragile and very short lived, vul-

nerable to interference of a post-stimulus mask and declined quickly in the first second

after stimulus presentation. After about a second, performance in both conditions was

equivalent and relatively stable across delay times, suggesting a shift into a more stable,

but lower-capacity memory system.

0.1.2 Long-term memory

While working memory is severely capacity limited, long-term memory for visual stim-

uli seems to have no bounds. In a 1973 study published by Standing, participants were

tested on their long-term memory for images and words. Participants studied between 20

and 10,000 images, knowing they would be tested on their memory for a subset. Approx-

imately two days after the study session, participant were tested on their memory for a
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subset of images with a recognition test. Standing found that participants’ memory for

images increased logarithmically with the number of images studied, implying that there

is no upper bound to the number of visual stimuli we can remember. Results of similar

studies suggest that this high performance reflects a relatively rich memory for perceptual

details of the stimulus, not simply category relations (Brady, Konkle, Alvarez, & Oliva,

2008; Konkle, Brady, Alvarez, & Oliva, 2010). Brady and others (2013) additionally found

that the fidelity of visual information in long-term memory is comparable to that of visual

working memory, suggesting that information acquires no additional loss when being con-

solidated to long-term memory.

0.1.3 Working memory

It is clear, when contrasting different memory processes, that working memory is a process

that actively maintains a limited amount of information over a short period of time. In my

dissertation, I assume the “limited amount of information” is realized through a continu-

ous, stochastic resource, which I describe further in Section 0.2.3 below.

What are the neural mechanisms that support the encoding and maintenance of WM

items? A prominent theory was that memory is maintained through persistent activity in

the lateral prefrontal cortex during the delay (e.g. Fuster & Alexander, 1971; Funahashi,

Bruce, & Goldman-Rakic, 1989). Seminal work by Funahashi and others (1989) found,

in a monkey oculomotor delayed-response task, that a significant proportion of neurons

recorded in monkey dorsolateral prefrontal cortex sustained neural activity above baseline

during the memory delay. Furthermore, they found neurons that were sensitive to space,

consistently having greater activity for one target location than another.
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More recently, delay-period activity associated with working memory has been shown to

be distributed throughout the brain, depending on the task demands and the stimulus

being maintained in working memory, supporting a more “sensory recruitment” model

of working memory (e.g. Curtis & D’Esposito, 2003; Postle, 2006; D’Esposito & Postle,

2015; D’Esposito, 2007; Y. Xu, 2017; Harrison & Tong, 2009). The premise of this model

is that the brain maintains information with the same areas that encoded that informa-

tion, rather than copying that information. Crucially, this means that working memory

for visual items takes advantage of the system already designed to hold that information

at high resolution. This revision of the original model of working memory maintenance in

the brain posits that a high-fidelity representation of sensory areas is maintained in visual

areas, which is modulated by goal-directed information represented in prefrontal cortex

(Curtis & D’Esposito, 2003; Sreenivasan, Curtis, & D’Esposito, 2014).

0.2 VWM encoding: data and models

In this section, I will discuss data and behavioral models that provide insight into how

working memory representations are encoded. First, I will discuss the “slots” model, which

posits that memory is object-based, and limited by how many objects can be stored within

it (e.g. Luck & Vogel, 1997; Cowan, 2001). I will then discuss data that the original slots

model is not able to account for, then introduce the “resource” models, which posit that

working memory has a limited amount of information that is shared across memoranda

(e.g. Wilken & Ma, 2004). Finally, I will discuss how the behavioral relevance of different

items affects how they are encoded.
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0.2.1 Slots models

Different instantiations of slots models have been around for a while, like Miller’s or

Cowan’s respective “magical” 7± 2 or 4 (Miller, 1956; Cowan, 2001). The idea behind this

theory is that there are a limited number of slots, which are responsible for maintaining

memories. If an item makes it into a slot, it is remembered perfectly. If it doesn’t make

it into the slot, it is not remembered at all. A metaphor sometimes used to describe this

model is having three to four juice boxes to distribute to people. People either receive an

entire juice box or no juice at all. This model could explain the clear decline in perfor-

mance when increasing set sizes beyond 3 or 4.

In 1997, Luck and Vogel published a seminal study using a change detection paradigm. In

change detection tasks, participants briefly view a set of items, remember them over a de-

lay, view another set of items, and decide whether the second set of items is the same as

the first in the relevant feature(s). Typically, if there is a change in the second set, then

the change is in one item. In this task, participants completed change detection tasks with

colored squared, oriented lines, or lines with both orientation and color. Importantly, they

varied the number of stimuli to be remembered (i.e., the set size) from 1 to 12. This study

found that performance was equally good for set sizes 1-3, but declined from 4-12. Addi-

tionally, they found that the same performance was achieved whether the stimuli had only

one relevant feature (e.g., color or orientation) or multiple relevant features to remember

(e.g., color and orientation). Luck and Vogel concluded from these results that our mem-

ory was composed of several object-based representations, similar to “chunks” in verbal

working memory. This means that people can hold several items in mind, irrespective of

the complexity of the item.
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0.2.2 Data incompatible with the slots framework

While the slots model was able to capture some set size effects of data, there were trends

in the data it could not account for. Specifically, there were a number of studies demon-

strating a tradeoff between the number of items one could remember with the precision

with which they remembered them. For some of these tasks, the set size tested was well

within the capacity limits laid out by the slots model, indicating that memory was not

actually object-based (and thus constrained only to one’s ability to chunk things into “ob-

jects”), but information-based (only able to hold a certain amount of information across

all features of all items). Here, I summarize some of this data.

Phillips (1974) demonstrated in a change detection task that the complexity of a single

item affected its change detection performance. Alvarez and Cavanaugh (2004) demon-

strated that capacity estimates for different item types (line drawings, cubes, random poly-

gons, Chinese characters, letters, colors) were directly related to its complexity, finding

that the estimated capacity was lower for more complex items. These results suggest that,

if working memory is made up of a few slots, then these slots are not truly-object based

but themselves have some capacity limit.

In 2004, Wilken and Ma demonstrated that there was a tradeoff between number of items

remembered and the precision with which they are remembered. In a delayed estimation

task, participants were instructed to remember the feature value of N stimuli (i.e., the

color of 2, 4, 6, or 8 colored squares, the orientation of 2, 3, 4, or 5 oriented Gabors). Af-

ter a 1500ms delay, one of the N stimuli was probed, and participants reported the value

of that probed stimulus as accurately as possible. Unlike previous recall tasks, which used

discrete stimuli like alphanumeric characters (e.g. Sperling, 1960), these stimulus features

7



were continuous. Thus, the memory estimation errors could be aggregated across trials to

make an error distribution, where the center was the true stimulus value and the width

corresponded to some measure of a person’s memory precision. These results found that,

for higher set sizes, the distributions were wider, illustrating a tradeoff between the num-

ber of items remembered and the precision with which they are remembered.

Fougnie and others (2010) showed that items of different complexity could be estimated

to have the same capacity, but the precision with which the items are remembered would

differ. Specifically, they found that items with both color and orientation information had

the same capacity estimates as items with only color or orientation information, in agree-

ment with the results of Luck and Vogel (1997). However, an important additional result

that previous authors didn’t show was that memory for items with multiple features was

less precise than items with just one feature.

0.2.3 Resource models

Because of the inability of the slots model to account for this data, a new family of mod-

els was suggested, which are broadly referred to as “resource” models (e.g. Wilken & Ma,

2004; Fougnie, Suchow, & Alvarez, 2012; van den Berg, Shin, Chou, George, & Ma, 2012;

Sims, Jacobs, & Knill, 2012; Bays & Husain, 2008; Oberauer & Lin, 2017). The funda-

mental idea behind these models is that there is a continuous, limited resource that all

items in memory must share. This is akin to having pitcher of juice that one must dis-

tribute amongst all people. This juice could be allocated flexibly: all juice could be dis-

tributed to one item, juice could be distributed equally across items, juice could be dis-

tributed unequally across a subset of items. The amount of juice was not necessarily fixed,

some versions allowing the total amount of resource to vary with set size (Bays & Husain,
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2008; van den Berg et al., 2012; Keshvari, van den Berg, & Ma, 2013; van den Berg & Ma,

2018; Mazyar, van den Berg, & Ma, 2012; Elmore et al., 2011) or on a trial-to-trial basis

(Fougnie et al., 2012; van den Berg et al., 2012).

In my thesis, I primarily build models consistent with the Variable Precision (VP) model

described by van den Berg, Shin, and others (2012). This model assumes that there is a

total amount of resource available to an observer, defined as total memory precision, which

varies on a trial-to-trial basis. This assumption, as well as its lack of assumptions about

resource allocation across items, were two key reasons why we chose to use this model. In

Chapter 1, I quantitatively test whether variable precision is a reasonable assumption to

make in human data, and find strong support for this model, corroborating previous re-

sults (van den Berg, Awh, & Ma, 2014). For Chapter 2 and 3, I continue to assume that

precision is variable. The assumption of variable precision is important for Chapter 3, and

the lack of constraints about resource allocation is critical to Chapter 2 and 3.

In this model, the total memory precision is operationalized as Fisher information. We

model an observer’s noisy memory of an item as a sample from a Gaussian or von Mises

(for stimuli that live in a circular space) distribution. To account for the observed stochas-

ticity in memory precision across items and trials, the precision of this Gaussian or von

Mises is itself a random variable. In this VP model, we assume that the precision is drawn

from a Gamma distribution.

0.2.4 The role of priority in VWM

One behavioral effect that I will be paying particular attention to in this dissertation is

that people can remember certain items better, often at the cost of the memory for other
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items. Experimenters elicited this effect by manipulating the behavioral relevance of the

items either through the probability of it being probed (e.g. Bays, 2014; Dube, Emrich, &

Al-Aidroos, 2017; Emrich, Lockhart, & Al-Aidroos, 2017; Klyszejko, Rahmati, & Curtis,

2014; Zhang & Luck, 2008; Gorgoraptis, Catalao, Bays, & Husain, 2011) or by monetary

reward (Klyszejko et al., 2014). For example, in the 2014 Bays paper, a location was cued

before stimulus presentation, indicating that the item that would appear in that location

was three times more likely to be probed for response than the remaining item(s). In this

dissertation, I define priority as behavioral relevance. While this bears some similarity to

the “priority” of priority maps theory (e.g. Thompson & Bichot, 2005; Serences & Yantis,

2006; Bisley & Goldberg, 2010), which posits that the priority of an item is a function of

both the bottom-up salience and top-down importance, I restrict the meaning in this dis-

sertation to be purely top-down. In Chapter 2 and 3, I investigate what strategies people

use when allocating resource across items with different priorities.

How might priority be represented in the brain? Perhaps it is maintained through neu-

ral population gain. Human fMRI studies have shown that attention increases the neural

gain of populations encoding the attended item’s location (Kastner, Pinsk, De Weerd, Des-

imone, & Ungerleider, 1999; Buracas & Boynton, 2007; Gandhi, Heeger, & Boynton, 1999;

Gouws et al., 2014; Jerde, Merriam, Riggall, Hedges, & Curtis, 2012; Serences & Yantis,

2007; Somers, Dale, Seiffert, & Tootell, 1999; Rahmati, Saber, & Curtis, 2018; Sprague,

Itthipuripat, Vo, & Serences, 2018; Saber, Pestilli, & Curtis, 2015; Nobre et al., 2004). Ad-

ditionally, population coding models have successfully accounted for prioritization effects

in error through modulating neural gain (Bays, 2014). In Chapter 4, I investigate whether

an item’s priority is represented through the amplitude of the same populations encoding

its location.
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0.3 VWM decisions: data and models

0.3.1 Bayesian decision theory

In the previous section, I described two families of models of how working memory is en-

coded. However, those models don’t describe how the memories are then used to make a

decision. For that, I use Bayesian decision models, which provide a flexible, interpretable,

and generalizable framework to study the working memory decision process. Bayesian de-

cision models are particularly useful in cases where the observer is trying to make a de-

cision without full knowledge of task-relevant information. In working memory, this is

often because people don’t remember information perfectly. Bayesian decision models

have two components: Bayes rule, which formalizes how observers compute probabilities

about states of the world, and a cost function (also referred to as gain, loss, or objective

function), which describes how observers should use the probabilities in a decision. While

Bayesian decision theory describes how an observer should behave in order to maximize

performance, different components of the model can be easily substituted with incorrect

beliefs or suboptimal use of information, and thus provides a good template for building

models with “imperfectly optimal observers” (Maloney & Zhang, 2010) or “model mis-

match” (Orhan & Jacobs, 2014; Beck, Ma, Pitkow, Latham, & Pouget, 2012; Acerbi, Ma,

& Vijayakumar, 2014).

The first component of Bayesian decision models, Bayes rule, allows the observer to cal-

culate beliefs over different states of the world from their observations (or in this disserta-

tion, their memories) and prior knowledge. More concretely, a Bayesian observer can com-

pute posterior probabilities of states of the world as a function of the prior (the probabil-
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ities of the states of the world) and the likelihood (the probability of having their current

memory given different states of the world). The observer combines this posterior with the

cost function to calculate the expected cost of each action. With this information, the op-

timal observer chooses the action that produces the lowest expected cost.

In my dissertation, I investigate how (if at all) people are using uncertainty in their work-

ing memory decisions. Intuitively, uncertainty is how trustworthy we believe our memory

is; technically, uncertainty is the believed width of the likelihood or posterior distribution

over the stimulus value.

Uncertainty and noise are not synonymous. Noise refers to the imprecision at the encod-

ing process, which could be due to a noisy stimulus or poor memory. Uncertainty refers to

the ambiguity associated with the stimulus value during the decision stage. Noise and un-

certainty may be completely unrelated. For example, consider looking at a bunch of dead

leaves on the ground. There may be uncertainty about which leaf segments correspond to

the same leaf because of occlusion, despite there being no sensory noise.

However, often times noise contributes to uncertainty. For example, viewing a low-contrast

Gabor will results in higher sensory noise than a high-contrast Gabor. For the optimal

Bayesian observer, this noise will affect the uncertainty over the orientation of the Gabors;

the uncertainty associated with the orientation of the low-contrast Gabor will be higher

than that of the high-contrast Gabor. However, it is possible for the observer’s uncertainty

to not match that of the Bayes-optimal observer, which we will colloquially refer to as “in-

accurate.” In my dissertation, I manipulate noise through sensory reliability (Ch. 1) or

priority (Ch. 2, 3).
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0.3.2 The role of uncertainty in VWM

In perception, there have been numerous studies demonstrating optimal use of uncer-

tainty in a variety of tasks (e.g. van Beers, Baraduc, & Wolpert, 2002; Trommershäuser,

Maloney, & Landy, 2003; Ernst & Banks, 2002; Alais & Burr, 2004; Kording, 2007; Knill

& Pouget, 2004). However, its role in working memory tasks has not garnered the same

amount of attention. Here are three reasons why uncertainty in working memory was not

considered until recently. First, categorization tasks, such as change detection, are triv-

ial from a slots model framework. If working memory was an all-or-none process, mak-

ing a change detection decision would be as simple as saying the stimulus has not changed

only if it is exactly what you remember and saying it changed otherwise. In other words,

there is no uncertainty in the slots model framework. In a resource framework of work-

ing memory, change detection becomes a signal detection or Bayesian inference problem

(Wilken & Ma, 2004), in which uncertainty is fundamental to maximizing performance.

This is because the observer must now to weigh their memory by how noisy it is. Second,

the magnitude of changes in traditional change detection tasks was so large, for example

from blue to yellow, that use of uncertainty would not necessarily improve performance.

Uncertainty assists an observer when making a categorical decision like change detection

only if the measured amount of change could be reasonably attributed to either the actual

change or memory noise. Third, some tasks commonly used to study working memory do

not actually require use of uncertainty to maximize performance. Examples of these tasks

are change discrimination and delayed estimation tasks, both of which only require use of

a point estimate of the value of a memory to make a performance-maximizing decision.

Recently, there has been some research investigating the role of uncertainty in working
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memory. There is some evidence that people maintain a sensible representation of un-

certainty. People’s memory reports are more accurate in trials with higher confidence re-

ports (Rademaker, Tredway, & Tong, 2012). Even within a trial, people are able to choose

a better remembered item to report, suggesting an item-specific representation of their

memory noise (Suchow, Fougnie, & Alvarez, 2017). However, other studies have indicated

that accuracy and confidence need not be related, suggesting our uncertainty may not be

accurate (Bona & Silvanto, 2014; Adam & Vogel, 2017). On the other hand, there is re-

search indicating that observers can use uncertainty cues in a change detection task, but

did not investigate whether participants maintained that uncertainty information in VWM

(Keshvari, Berg, & Ma, 2012). The goal of Chapter 1 is to answer whether people main-

tain and use an accurate representation of uncertainty in a change detection task.

0.4 Dissertation outline

In my thesis, I discuss specifically how priority and uncertainty are used to facilitate work-

ing memory representations and decisions. In Chapter 1, I investigate the role of uncer-

tainty in working memory. Specifically, I ask whether uncertainty information is main-

tained and used in an orientation change detection task. I find, through computational

modeling, that people maintain an accurate representation of their uncertainty and use it

probabilistically when making a change detection decision.

In Chapter 2, I investigate how priority is used to facilitate the encoding of working mem-

ory representations. Specifically, I ask if people flexibly allocate resource across multiple

levels of priority and, if so, how. I use a four-item delayed estimation task where each item

has a different priority. I find, through computational modeling, that people allocate re-
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source in order to minimize their estimation error across the experiment.

In Chapter 3, I investigate uncertainty and priority together, asking if we can replicate

and generalize the results of previous chapters in new contexts. Specifically, I ask if prior-

ity affects uncertainty representations, if people use uncertainty optimally when making

working memory decisions, and if people would change their encoding strategy based on

task demands. I find remarkably consistent results: people have an accurate item-specific

representation of uncertainty, people use this uncertainty optimally when making deci-

sions, and people allocate resource in order to minimize error (although this strategy is

myopic in this experiment).

Finally, in Chapter 4, I investigate the representation of priority in the brain during a

working memory delay. Specifically, I use fMRI to ask if the priority of an item, in a spa-

tial delayed estimation task, is represented in the same populations maintaining its loca-

tion. I find evidence of this representation in visual areas, but not in frontal areas. These

results provide direct evidence of gain as the neural mechanism of priority, and thus per-

haps precision, in sensory areas. Additionally, it demonstrates the different representa-

tional structures, and thus perhaps functional roles, of different brain areas.
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1 The role of uncertainty in change

detection

Perhaps the earth is floating,
I do not know.

Perhaps the stars are little paper cutups
made by some giant scissors,

I do not know.
Perhaps the moon is a frozen tear,

I do not know.
Perhaps God is only a deep voice,

heard by the deaf,
I do not know.

Anne Sexton, The Poet of Ignorance
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1.1 Introduction

Traditional slot theories of visual working memory (VWM) have described remembering

something as an all-or-nothing process (e.g., Luck & Vogel, 1997). If an item makes it into

a slot, it is remembered perfectly. If it does not make it into a slot, it isn’t remembered

at all. According to this model, categorization tasks such as change detection are trivial.

Participants would be absolutely certain when deciding about a remembered items and

guessing otherwise.

More recent theories have described memories as noise-corrupted representations of memo-

randa. In this framework, VWM is a limited resource that can be flexibly allocated to any

number of stimuli or stimulus features (e.g., Bays & Husain, 2008; Fougnie, Cormiea, Kan-

abar, & Alvarez, 2016). The models in this resource framework explain human data better

than previous theories (van den Berg et al., 2012; Fougnie et al., 2012; Bays & Husain,

2008; Ma, Husain, & Bays, 2014). In a resource model framework, change detection is no

longer trivial. Because each memory is an imperfect measurement of the actual stimulus,

change detection becomes a signal detection problem. In order to perform optimally, an

observer must maintain the uncertainty information associated with each memory (Wilken

& Ma, 2004). While optimal use of uncertainty has been established in the perceptual lit-

erature (e.g. van Beers et al., 2002; Trommershäuser et al., 2003; Ernst & Banks, 2002;

Alais & Burr, 2004; Kording, 2007; Knill & Pouget, 2004), its role in working memory

tasks is uncertain (pun intended). Do people maintain and use uncertainty? Do people

perform optimally in VWM change detection tasks?

Keshvari and others (2012) demonstrated that people use uncertainty cues optimally in

a change detection task. In their experiment, participants remembered the orientations
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of four ellipses over a one second delay. After the delay, the ellipses were presented again

briefly. On half of the trials, the ellipses were identical to the first presentation. On the

other half of the trials, the orientation of one of the ellipses changed. Participants indi-

cated with a button press whether they believed there was a change or not.

There were two important experimental departures from traditional change detection

tasks, both of which allowed the experimenters to test how accurately people represent

their uncertainty. First, the change in orientation on every trial was randomly sampled

from a uniform distribution, and thus could be of any magnitude. Previous tasks typi-

cally used a fixed, large change. Like in previous tasks, detecting a large change is rela-

tively easy; it is highly unlikely that you would measure such a change from memory noise

alone. However, small measured changes could be a result of an actual physical change or

memory noise. Uncertainty is essential for disambiguating these two potential states of the

world.

Second, each stimulus could independently have “high” or “low” sensory reliability. In this

study, we manipulated it through ellipse elongation; a longer, skinnier ellipse provided

higher reliability orientation information than its shorter, wider counterpart. If partici-

pants’ uncertainty was accurate (which is to say, if their uncertainty reflected the uncer-

tainty of the optimal Bayesian observer), then their uncertainty on average would be lower

for high reliability items. In order to perform optimally on this change detection task, par-

ticipants would have to weigh their memories of each of the ellipses by its item-specific

uncertainty. Thus, this manipulation allowed experimenters to distinguish between partici-

pants who do and do not have an item-specific representation.

Keshvari and others found that a model with the following three characteristics fit the

data best: doubly-stochastic memory, as defined through the Variable Precision model
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(van den Berg et al., 2012); observers who had an accurate, item-specific uncertainty; and

observers who optimally combined information to make their decision. This study showed

strong evidence for the use of uncertainty in working memory tasks, demonstrating that

change detection was a form of probabilistic inference.

However, the notion of memory is largely absent from this paper. Memory is only men-

tioned briefly in the discussion when explaining the complexity of the change detection

decision process; the authors recognize that the orientations must be maintained over the

delay. However, they don’t discuss whether uncertainty is maintained over the delay. In

fact, it is possible that uncertainty was not maintained in working memory. The main ma-

nipulation of uncertainty in this task was through the noise induced by having different el-

lipse reliabilities. Because ellipses were presented with the same reliabilities on the second

delay, participants could have used that information as a heuristic for uncertainty instead

of maintaining any representation.

The results about whether people can maintain uncertainty is a bit mixed. Most of these

studies probe confidence, an explicit report related but not identical to uncertainty. Some

of these studies find evidence of a sensible representation of uncertainty. For example,

Rademaker and others (2012) demonstrated that people’s memories were more precise on

trials that they were more confident in. Suchow and others (2017) demontrated, in two

different tasks, that people can reliably choose the better remembered item out of multiple

memoranda, suggesting an item-specific representation of working memory precision.

Others show evidence of the opposite (e.g. Bona & Silvanto, 2014; Adam & Vogel, 2017).

Bona and Silvanto found that making two orientation change discrimination judgments in

a row significantly decreased confidence, but did not necessarily decrease accuracy. Adam

and Vogel demonstrated a disconnect between participants’ feeling of remembering and
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actually remembering. In several experiments, participants would sometimes fail to re-

member anything despite reporting being “on task.” Thus, it is still unclear from these

confidence studies whether people maintain a representation of uncertainty.

In this chapter, we ask whether people maintain and use an accurate representation of un-

certainty in an orientation change detection task. We chose to investigate this question by

subtly changing the experimental paradigm in Keshvari et al., 2012. In the first experi-

ment, we replicate the experiment and models finding that people can use uncertainty in-

formation optimally when that information is available to them at decision. We then mod-

ify the experimental paradigm such that uncertainty information must be maintained in

order to be used and ask if people are able to maintain and use memory uncertainty. We

find remarkably consistent results, suggesting that people maintain an accurate representa-

tion of uncertainty over the delay, and use it when making change detection decisions.

1.2 Experiment

1.2.1 Experimental methods

1.2.1.1 Stimuli

Stimuli were four, light-grey, oriented ellipses on a medium-grey background. Each ellipse

could be “long” or “short,” to provide respectively higher or lower reliability information

regarding the orientation of the ellipses. All ellipses had an area of 1.19 degrees of visual

angle (dva). The long ellipse had an ellipse eccentricity of 0.9, such that the major axis

and minor axis was 1.02 and 0.37 dva, respectively. The ellipse eccentricity of the short
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ellipse was determined separately for each participant to equate performance (details in

Procedure).

On every trial, a stimulus display consisted of four ellipses. The probability of each ellipse

being a long ellipse was 0.5, independent of the reliability of the other ellipses. The loca-

tion of the first ellipse was drawn from a uniform distribution between polar angles 0◦ and

90◦. Each ellipse after that was placed such that all ellipses were 90◦ apart on an imagi-

nary annulus that was 7 dva away from fixation. Afterward, the x- and y- location of the

ellipses were independently jittered -0.3 to 0.3 dva. In one experiment, there were addi-

tionally oriented line stimuli, which were set to have approximately the same area as the

ellipses.

1.2.1.2 Participants

Thirteen participants (11 female; M = 21.1, SD = 2.5) completed both experiments.

All participants had normal or corrected-to-normal vision. Participants were naive to the

study hypotheses and were paid $12/hour and a $24 completion bonus. We obtained in-

formed, written consent from all participants. The study was in accordance with the Dec-

laration of Helsinki and was approved by the Institutional Review Board of New York Uni-

versity.

1.2.1.3 Procedure

Participants completed two experiments. In one experiment, a trial began with a fixation

cross presented for 1000 ms. Four ellipses were presented for 100 ms, followed by a 1000

ms delay, then by the second stimulus set presentation for 100 ms. On half of the trials,
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all ellipses in the second stimulus presentation were identical to the ellipses in the first

stimulus presentation. On the other half of the trials, one ellipse changed in orientation;

this change was drawn from a uniform distribution, so change of any magnitude had equal

probability. Each ellipse had equal probability of containing the change. The participant

indicated with a button press whether they believed there was an orientation change be-

tween the two displays.

In the second experiment, the stimuli in the second stimulus set presentation were oriented

lines rather than ellipses. The task was otherwise identical. We refer to the experiments

with ellipses and lines in the second presentation as the “Ellipse” and “Line” experiments,

respectively. Examples of a trial in the Ellipse and Line experiments is illustrated in Fig-

ure 1.1.

Participants completed both experiments over six one-hour sessions. They began their first

session with a Practice block, used to ease the participants into the task. They then com-

pleted 2000 trials of each experiment, preceded by a Threshold block to set the “short”

ellipse reliability for each experiment. Participants completed all of one experiment before

completing the other, and the order was counterbalanced across participants.

The Practice block consisted of 256 trials. The stimulus presentation time decreased

throughout the course of the Practice block, from 333 ms to 100 ms, in 33 ms increments

every 32 trials. The stimuli in the second stimulus presentation corresponded to the exper-

iment that the participant completed first. For example, the stimuli in the second presen-

tation were lines if the participant completed the Line experiment first.

The Threshold block consisted of 400 trials, and was used to set a short ellipse reliabil-

ity level for each experiment. Unlike the actual task, the reliabilities of all ellipses on each
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trial were the same, but changed on a trial-to-trial basis. The second stimulus presenta-

tion set were either ellipses (of the same reliability) or lines, corresponding to the experi-

ment following it. A cumulative normal psychometric function was fit to the accuracy as

a function of ellipse reliability, and the “short” ellipse reliability was set as the value that

corresponded to a predicted 65% accuracy. If the ceiling performance of the participant

was estimated to be less than 75%, the Threshold block was repeated. If the psychomet-

ric function could not estimate an ellipse reliability for which performance would hit 65%

after the second try, the participant was excluded from the experiment.

100 ms1000 ms
Until

response1000 ms

100 ms

Figure 1.1 Trial sequence. Participants viewed a fixation cross, four ellipses were presented (here
showing 1 high-reliability ellipse and 3 low-reliabilty ellipses), maintained them over a delay, saw four
stimuli again, and reported whether they believed there was an orientation change or not. In the El-
lipse experiment, ellipses of the same reliability as the first presentation were presented during second
display. In the Line experiments, lines were presented instead of ellipses, to avoid providing cues to
the precision with which the first items were maintained.

1.2.2 Experimental results

Data for both experiments are visualized in Figure 1.2. Figure 1.2A show the propor-

tion report “change” as a function of magnitude of change (x-axis) and number of high-

reliability items (Nhigh, shown through different colored lines), for the Ellipse experiment

on the left and the Line experiment on the right. We conducted a two-way repeated-
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Figure 1.2 Behavioral data. A. proportion report “change” as a function of magnitude change
for Ellipse (left) and Line (right) experiments, conditioned on how many high-reliability stimuli were
presented (Nhigh, illustrated through different colors). B. proportion report “change” as a function
of number of high-reliability ellipses for Ellipse (left) and Line (right) experiments, conditioned on
whether there was no actual change (false alarm, FA, gold), a change in a low-reliability ellipse (Hlow,
blue), a change in a high-reliability ellipse (Hhigh), or a change in any ellipse (hit, H, purple). Note
that the hits, not conditioned on reliability of stimuli, are a weighted function of the conditioned hits
functions. C. proportion report “change” as a function of magnitude of change, broken up by whether
the change occurred in low- or high-reliability ellipses. The left two plots correspond to psychome-
tric functions with low- and high-reliability change in the Ellipse experiment. The right two plots
correspond to the psychometric functions with low- or high-reliability change in the Line experiment.
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measured ANOVA, with experiment and Nhigh as factors. The effect of Nhigh was ap-

proaching significance (F (1.38, 16.51) = 3.37, p = 0.07), after making a Greenhouse-Geisser

correction to the violation of sphericity. There was a nonsignificant effect of experiment,

but a significant interaction between Nhigh and experiment (F (2.12, 25.39) = 6.32, p =

0.006). These reflect the qualitatively observable effect of Nhigh on proportion respond

“change” for the Ellipse experiment only; people report “change” more when there are

more reliable ellipses. This seeming lack of effect of Nhigh in the Line experiment may seem

like uncertainty is not being used in the task. However, this qualitative difference can be

caused by things besides a lack of use of uncertainty. For example, it could be caused by

the change in stimulus type from the first to second display. It could also be caused by the

decrease in uncertainty in every item from having an extremely high-reliability orientation

stimulus in the second display. A process model can distinguish whether this qualitative

difference is due to a difference in strategy.

Figure 1.2B shows the false alarm rates and hit rates, broken up and averaged across high-

and low-reliability items, for different Nhigh, for the Ellipse experiment on the left and the

Line experiment on the right. Again, we test effects of number of high-reliability items

Nhigh and experiment on these variables with a two-way rmANOVA. The false alarm rate

for the Line experiment (M = 0.14, SEM = 0.03) was significantly higher than that of the

Ellipse experiment (M = 0.09, SEM = 0.02, F (1, 12) = 6.4953, p = 0.02). The greater false

alarm rate in the Line condition could be due to people mistaking the change in stimulus

as a change in orientation. The significant effect of Nhigh (F (4, 48) = 18.21, p < 0.001) and

a significant interaction between the two (F (1.94, 23.36) = 4.94, p = 0.04) corroborates

this intuition. Because the high-reliability items provide more orientation, they provide

more evidence of “no change,” thus making more correct responses as the number of high-

reliability ellipses increase. This may result be even larger for the Line experiment because
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of the stimulus change; the change from a high-reliability ellipse to a line may not feel as

jarring as a difference as the change from a low-reliability ellipse to a line.

There was a main effect of Nhigh on hit rate, F (1.35, 16.27) = 5.29, p = 0.03. This

reflects the result in 1.2A that it is easier to detect a change the larger that change is.

This seems to be a larger effect in the Ellipse experiment, reflected in statistics. There

was a non-significant effect of experiment, but a significant interaction between the two,

F (2.03, 24.43), p = 0.01.

There is an interesting reverse in the qualitative trend when splitting up the hit rate by

the reliability of the changed item. There is a significant decrease in hit rate with increas-

ing Nhigh in both low-reliability (F (1.76, 21.06) = 23.36, p < 0.001) and high-reliability

items (F (3, 36) = 35.44, p < 0.001). The intuition behind this decrease is similar to the

intuition behind the decrease in false alarms. As the number of high-reliability ellipses in-

crease (and thus high-reliability distractors), the distractors provide more reliable evidence

of no change. Thus, the participant is less likely to report change. This trend is reflected

in the psychometric function when conditioning on the reliability of the changed stimu-

lus (Figure 1.2C). Additionally, there was a significant effect of experiment on hit rates for

high-reliability items only (F (1, 12) = 14.66.p = 0.002). It is not clear why the proportion

report “change” is lower for the Line experiment; maybe the participant is overcompensat-

ing for the change in stimulus type across displays, and thus missing orientation changes.

There are clearly qualitative differences between the data in the two experiments, but it is

unclear what that says about the maintenance and use of uncertainty. We use computa-

tional modeling to help understand this process.
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1.3 Modeling methods

We first replicated the models from Keshvari et al., 2012, then we extended them to be

able to fit data from the Line experiment. We model the observer’s decision process as

consisting of an encoding stage and decision stage. The encoding stage (illustrated in Fig.

1.3) incorporates the task statistics and our assumptions about how the observer generates

memories. In the decision stage, the observer calculates a decision variable based on their

knowledge of the encoding stage and decides whether to report “change” or “no change”

based on some decision rule. We compare models with different formulations of the encod-

ing stage, the observer’s assumption about encoding stage, and their decision rule. This

section will describe how all models were defined, fit, and compared.

1.3.1 Encoding stage

In this section, we define the statistical structure of the experiment and define our as-

sumptions about how memories are generated in an observer. In Figure 1.3, we display

the generative model in turns of variables (left) and an example instantiation of values for

a trial (right). The generative model illustrates the statistical dependencies between vari-

ables. Each node represents a probabilistic variable, and each arrow indicates a probabalis-

tic dependency. For example, ∆ depends on ∆.

Variable C indicates whether there was a change on a trial (0: no change, 1: change). The

probability of change occurring on each trial is set to 0.5, so p(C) = 0.5. If C = 1, any

item is equally probable to be changed. All the orientations of the items presented on the
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Figure 1.3 Generative model. This illustrates the probablistic dependencies between variables. Each
node represents the probabilistic variable, and each arrow indicates a probabalistic dependency. I show
the same diagram in terms of the actual variable names (left) and a schematic example (right).

first display, which we denote by vector ξ1, are independently drawn from a uniform distri-

bution over orientation space,

p (ξ) =
( 1

2π

)N
.

In all model specifications, we double the actual orientation of stimuli, so the values span 0

to 2π rather than 0 to π. The orientation change, ∆, is drawn from a uniform distribution,

p(∆) = 1
2π . The vector of changes across all locations, ∆, is a vector of 0s if C = 0. If

C = 1, ∆ is a vector of 0s except for ∆ at the location of change i.

p(∆|C,∆) = 1
N

N∑
i=1

δ(∆− C∆1i),

1 Here, there is a slight difference between Keshvari et al. (2012) and my notation. While Keshvari
used θ as the orientations on the first display, I reserve θ to represent the vector of parameter
values.
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where 1i is a vector of 0s with 1 at the ith entry. The delta function describes a distri-

bution that has zero probability density everywhere except for the point at 0. Thus,

this delta function describes a distribution with 0 probability everywhere except when

∆ = C∆1i. Because the change in location is equally probable to occur in each of the N

items, we average over the N delta functions describing the change at each location. Note

that when C = 0, C∆1i = 0, and thus ∆ is a vector of zeros with length N .

The orientations at the second display, φ, is the sum of ξ and ∆,

p(φ|∆, ξ) = δ(φ− (ξ + ∆)).

The noisy measurements of each item on each display, x = (x1, ..., xN) and y = (y1, ..., yN),

respectively, is drawn from a Von Mises distribution centered on the actual orientation

presentation,

p(x|ξ;κx) =
N∏
i=1

p(xi|ξi, κx,i) =
N∏
i=1

1
2πI0(κx,i)

eκx,i cos(xi−θi)

p(y|φ;κy) =
N∏
i=1

p(yi|φi, κy,i) =
N∏
i=1

1
2πI0(κy,i)

eκy,i cos(yi−φi).

The κs are the concentration parameter of the Von Mises distribution, and are related to

the precision with which each item is remembered. The subscript of each κ indicates which

item it refers to (e.g., κx,i is for the ith item the first stimulus presentation xi). We con-

sider Fixed Precision and Variable Precision encoding of items (van den Berg et al., 2012;

Fougnie et al., 2012). With a Fixed Precision assumption of encoding noise, the κ for each

item is determined only by its ellipse reliability; items with high ellipse reliability would be

encoded with parameter κhigh, and the lower reliability ellipse with κlow.
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With a Variable Precision encoding scheme, κx,i and κy,i are themselves random variables,

rather than single values. Rather than sampling κ itself, we sample the Fisher information

of the Von Mises distribution, J , from a gamma distribution:

p(J) = 1
Γ(k)τ kJ

k−1eJ/τ ,

where τ is the scale parameter of the gamma distribution, k = J̄
τ
, and J̄ is the mean preci-

sion. The relationship between J and κ is the following:

J = κ
I1(κ)
I0(κ) ,

where I0 is a modified Bessel function of the first kind of order 0, and I1 is a modified

Bessel function of the first kind of order 1. We assume that the precisions of memories cor-

responding to low-reliability ellipses are drawn from a gamma distribution with mean J̄low,

and those corresponding to high-reliability ellipses are with J̄high. There are certainly dif-

ferences in the precision with which items in the first and second display are maintained,

independent of ellipse reliability. However, the contribution that the first and second dis-

plays contribute to the measured change, and calculation of the decision variable (Eq.

1.3), are extremely hard to tease apart in the model. Thus, we use one parameter per re-

liability and recognize that this estimate will be an aggregate of the precisions of the first

and second display.

When modeling the Line experiment, we have an additional parameter, J̄line, which cor-

responds to the mean precision with which each line on the second display is remembered

by the observer. The gamma function from which each line’s precision is drawn shares the

same scale parameter τ as the distributions from which the ellipse precisions are drawn.
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1.3.2 Decoding stage

1.3.2.1 Decision variable

The essence of Bayesian inference is that an observer can compute a posterior, and should

if they want to maximize performance. In this case, the observer should calculate the

probability of the state of the world (i.e., “change” or “no change”) given their observa-

tions, p(C|x,y), which they can compute using Bayes rule. With a scenario in which there

are only two states of the world, it is conventient to combine these into a ratio. Thus, we

assume the observer calculates, for each item, the ratio of the likelihood of there being

change and the likelihood of there being no change:

d = p(C = 1|x,y)
p(C = 0|x,y = p(x,y|C = 1)p(C = 1)

p(x,y|C = 0)p(C = 0) . (1.1)

Details of the derivation can be found in the Supplementary 1.6.1, but this simplifies to

the following expression:

d = p(C = 1)
p(C = 0)

1
N

N∑
i=1

di, (1.2)

where

di = I0(κx,i)I0(κy,i)
I0
(√

κ2
x,i + κ2

y,i + 2κx,iκy,i cos(xi − yi)
) , (1.3)

I0 is a modified Bessel function of the first kind of order 0, and the κs are the concentra-

tion parameters of the noise distributions for the item indicated in the subscript. Intu-
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itively, di provides a measure of the evidence of change for the ith item. This value in-

creases with xi − yi, but weighted by a function of the precisions with which each is re-

membered. These values are averaged in d, providing the optimal measure of evidence of

change of the entire display.

When calculating the decision variable, we consider models with different observer assump-

tions of the memory generating process, independent of the true generative process. In

other words, we allow for there to be “model mismatch” between the true generative pro-

cess and the believed generative process (Orhan & Jacobs, 2014; Beck et al., 2012; Acerbi

et al., 2014).

We consider that the observer may have one of the three assumptions2

1. Variable precision (V): mean memory precision varies with ellipse shape, and there is

additional noise for each item at each presentation.

2. Fixed precision (F): memory precision varies only with ellipse shape.

3. Same precision (S): memory precision is the same throughout the experiment, and

does not vary with ellipse shape or anything else.

1.3.2.2 Decision rule

The observer uses this decision variable to decide whether they believe a change occurred.

We consider two decision rules: the optimal (O) and max (M) rules. The Bayes-optimal

observer responds “change” whenever the probability of there being a change is greater

2 There was an additional assumption by Keshvari et al. (2012) that we chose not to model: that
participants believe their precision is an average of the precisions of the individual items.
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than 0.5. This is equivalent to observer responding “change” if the ratio of the likelihood

of there being a change and the likelihood of there being no change (Eq. 1.2) is greater

than 1:

pchange
1− pchange

1
N

N∑
i=1

di > 1, (1.4)

where pchange is the observer’s belief of p(C = 1). Note that participants may have incor-

rect assumptions about the noise in their memory, but still be acting in accordance with

Bayesian decision theory (i.e., still using the correct decision rule), resulting in “imper-

fectly optimal observers” (Maloney & Zhang, 2010).

This is in contrast to the observer using the max rule, who responds “change” whenever

the maximum evidence of change is greater than some criterion, k,

max
i
di > k. (1.5)

This observer is not Bayes-optimal, but may still be using probabilistic computation (i.e.,

may still be using their uncertainty) in the calculation of di.

1.3.3 Model prediction

In this section, we describe how we generate model predictions, given a model and its pa-

rameters, p(r|θ). If we knew the observers’ memories x and y, we could trivially calculate

what their response would be. However, because we do not have access to that informa-

tion, we calculate the probability that they will make a response, given the information we

33



do have.

Since there are only two responses (and the probability of these responses must add up to

1), we can simply calculate the value of one of them. Arbitrarily, I choose to calculate the

probability of the observer responding “change.” As experimenters, we do not know x and

y and thus must marginalize over them:

p(r|θ) =
∫∫

p(r|x,y, θ)p(x|ξ,Jx)p(y,φ,Jy)dxdy,

where Jx and Jy are the vectors of the precisions of the distributions from which each el-

ement in x and y are respectively drawn from. These values are defined by the encoding

model. For example, in the Fixed Precision encoding, Jx,i = Jy,i would be equivalent to

Jlow or Jhigh, depending on the reliability of the ellipse. For the VP model however, Jx,i

and Jy,i are themselves random variables and thus require additional marginalizations:

p(r|θ) =
∫∫∫∫

p(r|x,y,θ)p(x|ξ,Jx)p(y,φ,Jy)p(Jx|J̄x, τ)p(Jy|J̄y, τ)dxdydJxdJy.

We numerically integrate over these distributions by sampling. In the following results, we

sampled 50 samples for each trial3.

3 This may seem like a somewhat low sample number (and it is), but we have fit data with 200,
500, and 1000 samples and have not seen a difference in model fits or model comparison results.
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1.3.4 Parameters and parameter estimation

1.3.4.1 Parameters

There are two possible encoding schemes ((V)ariable, (F)ixed), three possible observer

assumptions of noise ((V)ariable, (F)ixed, (S)ame), and two possible decision rules

((O)ptimal, (M)ax). Factorially combining each of these characteristics would yield 12 dif-

ferent models. We choose not to consider the two models in which the generative model

is F but the observer assumes V under the assumption that people tend not to assume

the world is more complicated than it actually is; thus, we test a total of 10 models. We

denote each model by the letters corresponding to their encoding scheme, assumption of

encoding, and decision rule (e.g., VVO is the model with Variable precision encoding, an

observer that assumes Variable precision encoding, and an Optimal decision rule).

Observers with a V encoding scheme have parameters J̄high and J̄low corresponding to the

mean precision of the high and low reliability ellipses, respectively. The scale parameter,

τ , of the gamma distribution from which item-wise precision is drawn is shared across the

two ellipse values. If the observer is or believes they are F, then the according precision is

Jhigh = J̄high and Jlow = J̄low for high and low reliability ellipses, respectively. If the true

generative model and observer assumption are both F, then the model does not have the τ

parameter.

When fitting data from the Line experiment, there is an additional parameter J̄line. If the

observer is or believes they are F, then the according precision is Jline = J̄line. Scale param-

eter τ is then shared across all three stimulus types.

If the participant has the incorrect assumption that their precision is equal across reliabil-
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ities, items, and trials, then there is an additional parameter Jassumed, ellipse, corresponding

to the assumed precision of all ellipses. When fitting data from the Line experiment, we

additionally have parameters Jassumed, line, allowing the assumed precisions to differ across

shapes.

There is one additional parameter for the decision process. If the observer uses the opti-

mal decision rule, there is parameter pchange corresponding to the observer’s belief of the

prior. While this value is in reality 0.5, we allow the observer to have an incorrect belief.

If the observer uses the max rule, then we have parameter k, corresponding to the deci-

sion criterion. If any item has a decision variable greater than k, then they will respond

“change.” Each model and their corresponding parameters are also indicated in Table 1.1.

Model Parameters
VVO J̄high, J̄low, τ, pchange(, J̄line)
VFO J̄high, J̄low, τ, pchange(, J̄line)
VSO J̄high, J̄low, τ, pchange, Jassumed, ellipse(, J̄line, Jassumed, line)
VVM J̄high, J̄low, τ, k(, J̄line)
VFM J̄high, J̄low, τ, k(, J̄line)
VSM J̄high, J̄low, τ, k(, J̄line)
FFO J̄high, J̄low, pchange(, J̄line)
FSO J̄high, J̄low, pchange, Jassumed, ellipse(, J̄line, Jassumed, line)
FFM J̄high, J̄low, k(, J̄line)
FSM J̄high, J̄low, k(, J̄line)

Table 1.1 Model names and parameters. Model names and parameters for Ellipse condition.
Additional Line condition parameters are displayed in parantheses. The first digit of the model corre-
sponds to the encoding scheme: (V)ariable or (F)ixed. The second digit corresponds to the assumed
encoding scheme: (V)ariable, (F)ixed, or (S)ame. The third digit corresponds to the decision rule:
(O)ptimal or (M)ax.
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1.3.4.2 Maximum-likelihood estimation of parameters

The likelihood of the parameter combination (θ) for a given participant is the probability

of the data given the parameter combination. We calculate the log likelihood, which we

denote LL:

LL(θθθ) = log p(θθθ|data, model)

= log
Ntrials∏
t

p(rt|θθθ)

=
∑

“change” trials j
log p(rj = 1|θθθ) +

∑
“no change” trials j

log p(rj = 0|θθθ)

Because we are sampling to approximate this value, the calculation of our LL is stochastic

and can be computationally expensive. We thus used the optimization algorithm Bayesian

Adaptive Direct Search (BADS; Acerbi & Ma, 2017) in MATLAB, which combines two

different optimization methods: mesh adaptive direct search and Bayesian optimization.

BADS is a more suitable optimization method for stochastic likelihood landscapes (due

to sampling) than common optimization functions like MATLAB’s fmincon or fminsearch

because it explicitly incorporates uncertainty in the estimated LL. Additionally, it is able

to converge in fewer function evaluations than stochastic optimization methods like cmaes

(Hanson, Niederberger, Guzella, & Koumoutsakos, 2008) and genetic algorithm (Goldberg,

1988). We use 20 different starting positions, using latin hypercube sampling, to minimize

the probability of finding a local minimum. We took the minimum negative log-likelihood

of all the runs as our estimate of the maximum-likelihood, and the corresponding parame-

ter combination as our ML parameter estimate. We denote the maximum log-likelihood as

LL*.
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1.3.5 Model comparison

Models with more parameters are more flexible, usually providing a better fit to the

data. To encourage parsimony, we compared models using corrected Akaike Information

Criterion (AICc; Hurvich & Tsai, 1987) and the Bayesian Information Criterion (BIC;

(Schwarz, 1978)). BIC penalizes slightly harsher than AICc.

AICc = −2LL* + 2npars + 2npars + 1
ntrials − npars − 1

BIC = −2LL* + 2npars log ntrials

1.4 Results

In this section, we look at the results of the model fits. We fit 10 models to just the El-

lipse experiment, with the goal of replicating the findings of Keshvari et al., 2012. We also

collected the Line experiment to test if people maintained uncertainty during the delay.

To test this, we fit the same 10 models to the data from the Line experiment alone as well

as jointly fit the data from the Ellipse and Line experiment. We chose to jointly fit both

experiment’s data because jointly fitting theoretically allows us to get a more reliable es-

timate of the precision with which low- and high-reliability ellipses are remembered. How-

ever, we do not allow the strategies to differ across the Ellipse and Line experiments when

jointly fitting. If people do not use the same strategy across experiments, then the results

of jointly fitting will not be meaningful. Thus, we also separately fit the data from the

Line experiment, which provided a better estimate of which strategy each participant was

using in that experiment. We investigate each model’s absolute goodness-of-fit to the data
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through visualization (e.g., Figure 1.4) and their relative goodness-of-fit through AICc and

BIC (Figure 1.6).

Fitting Ellipse data only. When fitting just Ellipse data, we find the best performing

model is the VVO model, which defines the observer to have Variable precision encoding, a

Variable precision assumed encoding, and the optimal decision rule. The only model which

performs better for a subset of participants is the VVM model, which has the same en-

coding and assumption of encoding, but a different decision rule. The number of partic-

ipants best fit by these two models is split, the VVO model fitting better for seven par-

ticipants and the VVM model fitting better for the remaining six. The VVM model fits

better for most participants for most models, except one participant for the VFO, one for

the FFO, and the aforementioned seven for the VVO model. The two model comparison

metrics gave consistent results, so just BIC differences between each model and the VVO

model are illustrated in the left plot of Figure 1.6. Additionally, we can see in the first row

of Figure 1.4 that the VVO (and VVM) models provide a good qualitative fit to the data.

Parameter estimates for the VVO and VVM models are in Supplementary (Tables 1.2 and

1.3, respectively).

Fitting Line data only. Model predictions are illustrated in Figure 1.5. The differences

in model predictions are less obvious than the fits of the Ellipse data because there are less

differences between high- and low-reliability (Figure 1.6). Nevertheless, we find the best

performing model when fitting just Line data is the VVO model, which defines the ob-

server to have Variable precision encoding, a Variable precision assumed encoding, and the

optimal decision rule. There is one participant who is better fit by a model that defines

an observer who ignores uncertainty (assumes Same precision regardless of stimulus relia-

bility) and uses the optimal decision rule, regardless of whether their memories are truly
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Figure 1.4 Ellipse experiment model fits. M ± SEM data (error bars) and model predictions
(fills) for all models, organized by decision rule. For each model, the left graph illustrates the propor-
tion report “change” as a function of amount of change. Color indicates the number of high reliability
ellipses. The right graph illustrates the proportion hits for high-reliability items (green), hits for low-
reliability items (blue), hits averaged across the display (purple), and false alarms (gold) as a function
of number of high-reliability items.
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encoded with Variable of Fixed precision. Parameter estimates for the VVO model is in

Supplementary (Table 1.4).
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Figure 1.5 Line experiment model fits. M ± SEM data (error bars) and model predictions (fills)
for all models, organized by decision rule. For each model, the left graph illustrates the proportion
report “change” as a function of amount of change. Color indicates the number of high reliability
ellipses. The right graph illustrates the proportion hits for high-reliability items (green), hits for low-
reliability items (blue), hits averaged across the display (purple), and false alarms (gold) as a function
of number of high-reliability items.

Jointly fitting Ellipse and Line data. Unsurprisingly, when jointly fitting the data,

the results of the model comparison are in between the results when fitting the experi-

ments separately. The VVO model fits best for all participants for most models, and for

9 of 13 participants for the VVM model. Again, this model provides a good qualitative fit

to the data (top row of Fig 1.7). The VVM model fits are qualitatively reasonable (sec-

ond row of Fig 1.7), but do show more deviations in the data when compared to the VVO
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model. Quantitatively, it does not perform as well as the VVO model, fitting worse than

for several participants across different models. Parameter estimates for the VVO and

VVM models are in Supplementary (Tables 1.5 and 1.6, respectively).
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Figure 1.6 Model comparison. BIC(VVO)-BIC(model) for fitting data from the Ellipse experiment
(left), Line experiment (middle), or both experiments (right). Individual participant shown in bars;
M ± SEM shown in grey. Greater value indicates worse fit in comparison to the VVO model.

1.5 Discussion

In this chapter, we investigated how uncertainty was maintained and used in working

memory. Specifically, we hypothesized that uncertainty would be accurately maintained

during a delay and used when making an orientation change detection decision. We ad-

dressed this question by first replicating the results of Keshvari et al. (2012), then ad-

justed it slightly by changing the ellipses in the second presentation to lines.

1.5.1 Summary of results

First, we successfully replicated the results of Keshvari and others. We found that people

were best fit by a model with Variable precision encoding and an observer knows their un-
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Ellipse experiment, psychometric function for the Line experiment, hits and false alarms for the Ellipse
experiment, and hits and false alarms for the Line experiment. The two winning models are shown as
the first two rows, and all other models shown below.
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certainty. We found that seven of 13 participants were best fit by a model in which the

observer has the optimal decision rule; the other six were best fit by a model with a max

decision rule. At first glance, this seems like a departure from the results of Keshvari et

al., who claim to have found a “decisive difference” between the VVO and VVM model.

However, I would argue that a M ± SEM difference of 15.4 ± 17.3 between the models

is hardly decisive at all. Indeed, I would conclude that, in both studies, there is no clear

evidence of optimality in either datasets, just probabilistic computation. These results are

consistent with previous findings that, in a variety of perceptual decision-making tasks in-

cluding change detection, the optimal decision rule almost always fits data better than the

max rule, except for the odd case in which both rules perform similarly well. (Ma, Shen,

Dziugaite, & van den Berg, 2015).

There were a couple methodological differences between how we fit and compared models.

Keshvari and others compared models using marginal likelihoods while we used maximum-

likelihoods; we calculated the p(r|θ) in subtly different ways. It is comforting that despite

these methodological differences, we found remarkably consistent results. This is strong

evidence that people are indeed using item-specific uncertainty in a four-item orientation

change detection task.

We found consistent results when separately or jointly fitting the data from the Line ex-

periment with that of the Ellipse experiment, perhaps with larger support for optimality,

in which uncertainty would have to be maintained to be used. Again, we found that par-

ticipants were best fit by a model that had Variable precision encoding and an observer’s

assumption of Variable precision encoding. When solely fitting Line data, we found that

all but one participant was best fit by the VVO model. When jointly fitting data from

both experiments, 9 of the 13 participants were best fit by the VVO model, max decision
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rule fit best for the remaining 4. Unlike the Ellipse experiment, these results suggest that

information was actually maintained in working memory, since the information was not

available to them through some the ellipse reliability.

1.5.2 Limitations and future directions

In this chapter, we were somewhat unable to distinguish optimal and max decision rules.

These decision rules are notoriously hard to tease apart (Ma et al., 2015), but there may

be experimental choices that may better distinguish these two decision rules. In this task,

the optimal decision rule (Eq. 1.4 is much like a weighted average) and the max decision

rule is, as the name implies, a max (Eq. 1.5). In our current design, p(C = 1) = 0.5 and,

in change trials, each item is equally likely to change. Intuitively, the optimal and max

rules make the same predictions in this task because the aspects that only the optimal de-

cision rule considers do not change the predicted responses, relative to the max rule. If we

biased p(C = 1) or the probability of each item changing given a change trial, the max

and optimal decision rules may result in different predictions. This is of course something

we can test through model simulations. Distinguishing between these two decision rules,

rules that in most case provide similar predictions, may provide some insight into whether

humans are actually performing Bayesian inference or some type of approximate inference

that provides near-optimal performance in most cases.

The results of the parameter estimates in the Line experiment are a potential limitation of

the current results. Earlier, we pointed out that the qualitative lack of effect of reliability

on proportion report “change” may suggest that uncertainty is not being used. However,

the VVO model, a model in which the observer maintains and uses uncertainty optimally,

fit the data better than all other models. This model captures this seeming lack of effect
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of reliability by estimating the parameter of J̄line, the average precision for the line stimuli,

to be about as low as J̄low, the average precision for the low-reliability ellipse (see Table

1.4). This is counterintuitive; the precision with which participants represent the line stim-

ulus should be at a higher precision than either of the ellipses because it has the highest-

reliability orientation information. In other words, J̄line should be greater than J̄high and

J̄low. This is clearly not true. This result may seem to completely invalidate the results of

the Line experiment. However, the change of stimulus in the Line experiment (going from

ellipse to line) does affect the task subjectively, which isn’t necessarily accounted for in the

model. Perhaps the change in stimulus results in a less precise representation of orienta-

tion information overall, which is somehow reflected solely in the lower J̄line estimates. Al-

ternatively, people may not be maintaining and using uncertainty, but somehow the VVO

model was able to capture the data better than the other tested models. This is an aspect

of the result that we do not fully understand and could significantly affect the interpreta-

tion of the results. We are investigating this in more detail.

If the modeling results, however, truly reflect a maintenance of uncertainty, it is of course

still possible that the observer is maintaining some heuristic, not uncertainty per se. For

example, participants could maintain the ellipse reliability, using the knowledge that the

sensory reliability modulates uncertainty rather than representing a probability distri-

bution over the stimulus value (Barthelme & Mamassian, 2010). Unfortunately, our task

cannot separate these two possibilities. Additionally, it is always possible that people are

simply learning a stimulus-response mapping rather than performing probabilistic compu-

tations or Bayesian inference (Maloney & Mamassian, 2009). We attempted the minimize

the possibility of this when designing the experiment, by choosing to withhold feedback

throughout the experiment.
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1.5.3 Conclusions

In this chapter, we investigated and found that people maintain and use an accurate rep-

resentation of uncertainty when making change detection decisions. While the results of

this study are potentially promising, more work needs to be done to understand the role

of uncertainty in a broad range of working memory tasks. In Chapter 3, we attempt to

generalize these results by investigating the use of uncertainty in an entirely different task.

Importantly, we incorporate one key aspect of Bayesian decision models that we ignore in

this chapter: a cost function.
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1.6 Supplementary

1.6.1 Derivation of decision variable

In this section, we compute the decision variable from Eq. 1.1. In order to compute this

value, we must marginalize over the unknown variables ξ,φ,∆, and ∆.

p(x,y|C)p(C) =
∫∫∫∫

p(xxx|ξξξ)p (ξ) p(yyy|φφφ)p(φ|∆)p(∆|C,∆)p(∆)p(C)dξξξdφφφd∆∆∆d∆

= p(C)
( 1

2π

)N+1 ∫∫∫∫
p(xxx|ξξξ)p(yyy|φφφ)δ(φ− (ξ + C∆))(

1
N

N∑
i=1

δ(∆i − C1i)
)
dξξξdφφφd∆∆∆d∆

= p(C)
( 1

2π

)N+1 1
N

N∑
i=1

∫∫
p(xxx|ξξξ)p(yyy|ξξξ + C∆1i)dξξξd∆

Then, plugging this equation into the likelihood ratio:

p(x,y|C = 1)p(C = 1)
p(x,y|C = 0)p(C = 0) = p(C = 1)

p(C = 0)

∑N
i=1

∫∫
p(xxx|ξξξ)p(yyy|ξξξ + C∆1i)dξξξd∆∑N

i=1
∫∫
p(xxx|ξξξ)p(yyy|ξξξ)dξξξd∆

= p(C = 1)
p(C = 0)

∑N
i=1

∫∫
p(xxx|ξξξ)p(yyy|ξξξ + C∆1i)dξξξd∆

2πN
∫
p(xxx|ξξξ)p(yyy|ξξξ)dξξξ

Because the N items are conditionally independent, we can break the expression up into a

product of each item and further simplify.
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d = p(C = 1)
p(C = 0)

∑N
i=1

∫ (∏
j 6=i

∫
p(xj|ξj)p(yj|ξj)dξj

)
(
∫
p(xi|ξi)p(yi|ξi + ∆)dξi) d∆

2πN ∏N
i=1

∫
p(xi|ξi)p(yi|ξi)dξi

= p(C = 1)
p(C = 0)

N∑
i=1

∫ (∏
j 6=i

∫
p(xj|ξj)p(yj|ξj)dξj

)
(
∫
p(xi|ξi)p(yi|ξi + ∆)dξi) d∆

2πN
(∏

j 6=i
∫
p(xj|ξj)p(yj|ξj)dξj

)
(
∫
p(xi|ξi)p(yi|ξi)dξi)

= p(C = 1)
p(C = 0)

N∑
i=1

∫∫
p(xi|ξi)p(yi|ξi + ∆)dξid∆

2πN
∫
p(xi|ξi)p(yi|ξi)dξi

= p(C = 1)
p(C = 0)

N∑
i=1

∫∫
VM(xi; ξi, κx,i)VM(yi; ξi + ∆, κy,i)dξid∆
2πN

∫
VM(xi; ξi, κi)VM(yi; ξi, κi)dξi

= p(C = 1)
p(C = 0)

N∑
i=1

∫∫
VM(ξi;xi, κi)VM(∆; yi − ξi, κy,i)dξid∆

2πN
∫
VM(xi; ξi, κx,i)VM(yi; ξi, κy,i)dξi

= p(C = 1)
p(C = 0)

N∑
i=1

1
2πN

∫
VM(xi; ξi, κx,i)VM(yi; ξi, κy,i)dξi

= p(C = 1)
p(C = 0)

N∑
i=1

1
2πN

∫ I0(κ)
2πI0(κx,i)I0(κy,i)VM (ξi;µ, κ) dξi

,

where µ = xi + arctan(sin(yi − xi), (κx,i/κyi) + cos(yi − xi)) and κ =√
κ2
x,i + κ2

y,i + 2κx,iκy,i cos(xi − yi).

= p(C = 1)
p(C = 0)

N∑
i=1

I0(κx,i)I0(κy,i)
NI0 (κ)

∫
VM (ξi;µ, κ) dξi

= p(C = 1)
p(C = 0)

1
N

N∑
i=1

I0(κx,i)I0(κy,i)
I0 (κ) ,

This produces the final expression of the decision variable. Eq. 1.2,

d = p(C = 1)
p(C = 0)

1
N

N∑
i=1

di.

49



where

di = I0(κx,i)I0(κy,i)
I0
(√

κ2
x,i + κ2

y,i + 2κx,iκy,i cos(xi − yi)
) .

1.6.2 Maximum-likelihood parameter estimates

I report summary statistics for only the models that provided reasonable qualitative fits to

the data.

J̄high J̄low τ pchange
mean 28.06 10.84 43.74 0.46
SEM 5.05 2.20 10.85 0.02

Table 1.2 VVO parameter estimates when fitting Ellipse experiment. Mean and SEM
across participants for all parameters in the model in which participants have variable precision (VP)
encoding, assume VP encoding, and use an optimal decision rule.

J̄high J̄low τ k
mean 22.32 11.85 33.04 0.84
SEM 2.40 2.11 5.59 1.02

Table 1.3 VVM parameter estimates when fitting Ellipse experiment. Mean and SEM
across participants for all parameters in the model in which participants have variable precision (VP)
encoding, assume VP encoding, and use a max decision rule.

J̄high J̄low J̄line τ pchange
mean 22.51 5.62 5.62 5.78 0.45
SEM 4.65 2.35 1.33 1.11 0.02

Table 1.4 VVO parameter estimates when fitting Line experiment. Mean and SEM
across participants for all parameters in the model in which participants have variable precision (VP)
encoding, assume VP encoding, and use an optimal decision rule.
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J̄high J̄low J̄line τ pchange
mean 22.16 9.52 9.69 31.44 0.47
SEM 4.36 2.08 1.61 8.66 0.02

Table 1.5 VVO parameter estimates when jointly fitting Ellipse and Line experiment.
Mean and SEM across participants for all parameters in the model in which participants have variable
precision (VP) encoding, assume VP encoding, and use an optimal decision rule.

J̄high J̄low J̄line τ k
mean 16.25 7.32 10.23 23.13 0.05
SEM 2.25 1.57 1.81 6.83 0.85

Table 1.6 VVM parameter estimates when jointly fitting Ellipse and fitting Line ex-
periment. Mean and SEM across participants for all parameters in the model in which participants
have variable precision (VP) encoding, assume VP encoding, and use a max decision rule.
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2 Strategic allocation of working

memory resource to minimize

behavioral loss

It ain’t no fun if the homies can’t have none.

Snoop Dogg
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2.1 Introduction

In the previous chapter, the precision with which an item was encoded was manipulated

through the ellipse reliability of the item. However, in real life, the mean precision of

memory for items does not solely depend on bottom-up characteristics of the item. The

paradigm used in the previous chapter, along with a bulk of the working memory litera-

ture, ignores an important aspect of the real world: not all items are equally relevant. In

this chapter, we investigate how behavioral relevance, or priority, affects our working mem-

ory representations.

Studies that have investigated the effects of priority on behavior typically involve an at-

tentional cue that indicates the priority of items, in which one item is more likely to be

probed or rewarded higher than the rest of the items in the display. Perhaps intuitively,

these results show that people are able to remember a more important item more precisely

than less important items(Bays, 2014; Dube et al., 2017; Emrich et al., 2017; Klyszejko et

al., 2014; Gorgoraptis et al., 2011).

Importantly, previous studies have only used two levels of priority: one high priority item

(the attended or valid item) and low-priority items (the unattended or invalid targets).

These results could theoretically be explained by something like the spotlight or focus of

attention (Posner, Snyder, & Davidson, 1980; Treisman & Sato, 1990; Oberauer, 2002), in

which one item or area in space is afforded special privilege and thus has higher memory

precision.

However, we believe memory is more flexible than that; we believe people have some lim-

ited amount of resource that can be flexibly allocate across items. There are a few compu-
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tational models that hypothesize different allocation strategies, and each has fit the data

relatively well. Emrich et al. (2017) proposed that resource is allocated in approximate

proportion to the probe probabilities. Bays (2014) proposed that resource is allocated such

that the expected squared error is minimized. Sims (2015) proposed more generally that

resource is allocated to minimize loss. However, these models have conflicting hypotheses.

To distinguish these models, we designed a task that had three nonzero levels of priority

on every trial. We used a four-item delayed-estimation task, in which participants remem-

bered the location of items in space, and estimated the location of a probed item with a

memory guided saccade. Importantly, the task had an attentional precue indicating the

priority of each item, which was operationalized as probe probability. We predicted that

people would allocate resource according to priority, and we fit and compared different

models to determine what strategy people use when allocating their resource. We found

that people are best described by a model that assumes people allocate resource in order

to minimize behavioral loss.

2.2 Experimental methods

2.2.1 Participants

Fourteen participants (5 males, mean age=30.3, SD=7.2) participated in this experiment.

Everyone had normal or corrected-to-normal vision and no history of neurological disor-

ders. Participants were naive to the study hypotheses and were paid $10/hour. We ob-

tained informed, written consent from all participants. The study was in accordance with

the Declaration of Helsinki and was approved by the Institutional Review Board of New
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York University.

2.2.2 Apparatus

Participants were placed 56 cm from the monitor (19 inches, 60 Hz), with their heads in

a chinrest. Eye movements were calibrated using the 9-point calibration and recorded at

a frequency of 1000 Hz (Eyelink 1000, SR Research). Target stimuli were programmed in

MATLAB (MathWorks) using the MGL toolbox (Gardner Lab, Stanford) and were dis-

played against a uniform grey background.

2.2.3 Trial procedure

Each trial (Fig. 2.1) began with a 300 ms increase in the size of the fixation symbol, an

encircled fixation cross. This was followed by a 400 ms endogenous precue, consisting of

three colored wedges presented within the fixation symbol, each of which angularly filled

one quadrant. The radial sizes and colors of the wedges corresponded to probe probabili-

ties of 0.6, 0.3, and 0.1, respectively. (In our illustrations, the priorities correspond to col-

ors orange, yellow, and green, respectively, but in the experiment the wedges were pink,

yellow, and blue, respectively.) The quadrant with a probe probability of 0.0 did not have

a wedge.

The precue was presented for 400 ms; this was followed by a 700 ms interstimulus inter-

val, then by the targets, presented for 100 ms. The targets were four dots, each in sepa-

rate visual quadrants. The dots were presented at approximately 10 degrees of visual angle

from fixation, with random jitter of 1 degree of visual angle to each location. The location

of the targets in polar coordinates were pseudo-randomly sampled from every 10 degrees,
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avoiding cardinal axes.

This was followed by a variable delay, chosen with equal probability from the range be-

tween 1000 and 4000 ms in 500 ms increments. A response cue appeared afterward, which

was a white wedge that filled an entire quadrant of the fixation symbol. Participants were

instructed to make a saccade to the remembered dot location within the corresponding

quadrant of the screen.

After the saccade, the actual dot location was presented as feedback and the participant

made a corrective saccade to that location. After 500 ms, the feedback disappeared, par-

ticipants returned their gaze to the central fixation cross, and a 1500 ms inter-trial interval

began. Participants completed between 10 to 15 forty-trial runs over one or two one-hour

sessions.

fixation
cue 

ISI

delay

response

1000ms
400ms

700ms

1000-4000ms

stimulus
100ms

feedback

Figure 2.1 Trial sequence. Participants remembered the location of four dots (with different pri-
orities) over a variable delay, were probed to respond to the location of one, made a memory-guided
saccade to the remembered location of the probed item, and made a corrective saccade to the actual
location of the item.
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2.2.4 Data processing

Processing and manual scoring of eye movement data were performed in an in-house MAT-

LAB function-graphing toolbox (iEye). Eye position and saccadic reaction time (SRT)

were extracted from iEye. We excluded trials in which a) participants were not fixating

in the middle of the screen during stimulus presentation, b) saccades were initiated before

100 ms or after 1200 ms after the response cue onset, c) pupil data during the response pe-

riod were missing, or d) participants made a saccade to the wrong quadrant, ignoring the

response cue. This resulted in removing between 1% and 7% of trials per subject.

2.3 Modeling methods

2.3.1 Encoding stage

We model target location s as a two-dimensional vector corresponding to the target’s hor-

izontal and vertical coordinates. We assume x follows a two-dimensional Gaussian distri-

bution with mean s and covariance matrix 1
J
I, where J is a scalar that represents memory

precision.

Like in Chapter 1, we adopt the Variable Precision model (van den Berg et al., 2012), as-

suming that precision J is itself a random variable that follows a gamma distribution with

mean J̄ and scale parameter τ . Our extension of the model allows the priority-specific J̄

to vary; τ is fixed across conditions. We denote the mean total amount of available re-

source, the sum of the priority-specific precisions, as J̄total.
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2.3.2 Resource allocation strategies

In this experiment, we test three models: the Proportional, Flexible, and Minimizing Er-

ror model. The models differ in how resource is allocated amongst the different items. We

denote the proportion allocated to the high, medium, and low-priority item as phigh, pmed,

and plow, respectively. The mean amount of resource allocated to each item is some pro-

portion of J̄total. For example, the average amount allocated to the high-priority item is

phighJ̄total.

2.3.2.1 Proportional model

The Proportional model makes a very strong, unsubstantiated-but-extremely-intuitive hy-

pothesis: people allocate their resource proportional to the probe probabilities. In other

words, phigh = 0.6, pmed = 0.3, and plow = 0.1. Its two free parameters are total resources

J̄total and scale parameter τ .

2.3.2.2 Flexible model

The Flexible model is the complement to the Proportional model: able to describe a wider

range of human behaviors, but providing no hypothesis. In this model, the proportions

allocated to each priority condition are fitted as free parameters. Thus, this model makes

no hypothesis about how observers are allocated resource, only serves to describe what

they do. Its four free parameters are then J̄total, τ , phigh, and pmed.
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2.3.2.3 Minimizing error model

The Minimizing Error model is a normative model in which the observer allocates re-

sources in order to minimize expected behavioral cost across the experiment (Bays, 2014;

Harris & Wolpert, 1998; Kahneman & Tversky, 1979; Sims, 2015). We assume that the

cost on a single trial is related to the magnitude of the estimation error, ε, on that trial

through a power law:

Cestimation(ε) = εγ,

where γ > 0. We chose to use a power rather than committing to a type of error function

(e.g., absolute or squared error, which is γ = 1 or 2, respectively). The exponent on the

error serves as a “sensitivity to error” parameter: an observer with a large exponent will

experience a large error as much more costly than an observer with a lower exponent, and

will adjust their strategy accordingly to avoid those errors.

Suppose that on a given trial, the observer has allocated mean resource J̄ to the probed

stimulus. The expected cost on that trial is then an average over the errors ε that could

occur on that trial:

C̄estimation(J̄) ≡ E(Cestimation|J̄)

=
∫
εγp(ε|J̄)dε

=
∫
εγ
∫
p(ε|J)p(J |J̄)dJdε. (2.1)

Note that we had to additionally marginalize over J , because it is unknown. The analyti-

cal derivation of this value can be found in the Supplementary.
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So far, we have considered a trial with a given J̄ . Now, we ask how, for a given J̄total,

τ , and γ, should the observer set phigh, pmed, and plow to minimize the expected cost

across the entire experiment. We refer to this expected cost as the “overall expected cost”

(OEC); it is equal to

OEC(phigh, pmed, plow) = 0.6C̄(phigh · J̄total) + 0.3C̄(pmed · J̄total) + 0.1C̄(plow · J̄total).

We denote the resulting cost-minimizing proportions by p∗high, p∗med, and p∗low. The value of

probabilities vary as a function of J̄total, τ , and γ.

We assume the observer calculates and uses p∗high, p∗med, and p∗low. We find the values of

p∗high, p∗med, and p∗low with fmincon in MATLAB’s Optimization Toolbox (MathWorks). We

begin the optimization from ten different starting points, to lower the probability of find-

ing a local minimum, and choose the proportions corresponding to the lowest OEC. Note

that this optimization is different from the optimization completed to estimate the ML

parameters (explained below): the former is necessary to calculate the log-likelihood of a

single parameter combination, and is thus completed thousands of times within one ML

parameter estimation.

In this Minimizing Error model, resource allocation differs substantially from the Propor-

tional model (De Silva & Ma, 2017). An observer with limited resource should allocate

their resource more equally than proportional. Such a strategy would lower the probability

of very large errors for low-priority targets, at a small expense of the high-priority targets

(Figure 2.2).
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Figure 2.2 Model didactics: Minimizing Error model. The expected cost as a function of pre-
cision, J , for the Minimizing Error model. A hypothetical resource allocation choice is illustrated
through by the vertical colored lines, indicating the precision associated with the low- (green),
medium- (yellow), and high- (orange) items. The overall expected cost (OEC) is the sum of the
expected cost for each priority (the value of the cost function at the vertical lines) weighted by their
probe probability. The green step illustrates the behavioral benefit for allocating more resource to the
low-priority item from the high-priority item; the orange step illustrates the corresponding behavioral
detriment to the high-priority item. For this model, the OEC would decrease by allocating slightly
more resource to the low-priority item. Thus, optimal allocation favors more equal allocation.
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2.3.3 Model prediction

We assume the observer’s response, ŝ, is exactly x. This means that the magnitude of the

estimation error, ε ≡ ||x− s||, follows a Rayleigh distribution with parameter 1√
J
.

The probability of a response ŝ given a stimulus s is the following:

p(ŝ|s) =
∫∫

p(ŝ | x)p(x | s, J)dx p(J | J̄ , τ)dJ

=
∫∫

δ(ŝ− x)N
(
x; s, 1

J

)
dx p(J | J̄ , τ)dJ

=
∫
N
(
ŝ; s, 1

J

)
p(J | J̄ , τ)dJ

=
∫

Rayleigh
(
ε; 1√

J

)
p(J | J̄ , τ)dJ

We compute this value by numerically integrating over J with 500 equally spaced bins.

2.3.4 Parameter estimation

We use Bayesian Adaptive Direct Search (BADS; Acerbi & Ma, 2017) to estimate, for each

participant and model, the parameter combination θ that maximizes the likelihood of the

data given the model. We use 50 different starting positions, using latin hypercube sam-

pling, to minimize the probability of finding a local minimum. We took the maximum of

all the runs as our estimate of the maximum-likelihood, and the corresponding parameter

combination as our ML parameter estimates.
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2.3.5 Parameter and model recovery

To validate the data-generating and model-fitting code, we performed parameter and

model recovery. We simulated data from each model then fit each model to the simulated

data. Successful parameter recovery occurs when the estimated parameters for the model

that generated the data are equivalent or close to the true parameters. Parameter recovery

is necessary for the interpretability of the parameter estimates. Successful model recovery

occurs when the model which generated the data also fits the data better than any other

model. Model recovery is necessary to ensure the models are distinguishable in a psycho-

logically plausible model space. The results of our parameter and model recovery suggest

no problems with interpreting parameters of our models or the model comparison.

2.3.6 Model comparison

We compared models using the corrected Akaike Information Criterion (AICc; Hurvich &

Tsai, 1987) and the Bayesian Information Criterion (BIC; Schwarz, 1978). Both AICc and

BIC penalize models with more parameters, but BIC is more conservative.

2.4 Results

2.4.1 Behavioral Results

Stereotypical eye movements involve one lower accuracy saccade that brings the eye posi-

tion “into the area of” the target (which we call the primary saccade) and a subsequent

saccade that is like an adjustment to the primary saccade (wich we call the final sac-
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cade). For every trial, we computed error as the Euclidean distance, in degrees of visual

angle, between the true and estimated target location. We conducted three repeated-

measures ANOVAs with the priority condition as the within-subject variable and pri-

mary saccade error, final saccade error, and reaction time as dependent variables. In

line with our hypothesis, primary and final error decreased monotonically with increas-

ing priority (F (2, 26) = 13.01, p < .001 and F (1.18, 15.37) = 10.95, p = .003, re-

spectively), reflecting the intuition that people allocate more resource to a more behav-

iorally relevant target (Fig. 2.3). Reaction time decreased slightly with increasing priority

(F (1.3, 17.1) = 3.45, p = .08). This indicates that the main effect of results is not due to a

speed-accuracy trade-off. Because priority effects did not differ between primary and final

saccade position, we subsequently only analyze the final saccade data.
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Figure 2.3 Behavioral results. Primary (left) and final (middle) saccade error (M ± SEM across
participants) decreases as a function of increasing priority. This is effect is not due to a speed-
accuracy trade off, since reaction time (right) does not increase with priority. green: 0.1, yellow:
0.3, orange: 0.6.

2.4.2 Modeling results

The Proportional model provided a poor fit to the data (left plot of Fig. 2.4A), suggest-

ing that people do not allocate resource in proportion to probe probability. The Flexible
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model, on the other hand, fit the data well (middle plot of Fig. 2.4A) and formal model

comparison showed that it outperformed the Proportional model by a median AICc of

63 (bootstrapped 95% CI: [37, 107] and a median BIC of 54 [29, 99]; Fig. 2.4B). The

proportions allocated to the high-, medium-, and low-priority targets were estimated as

0.49 ± 0.04 (M ± SEM), 0.28 ± 0.02, and 0.23 ± 0.03, respectively (Fig. 2.5), suggesting

that the brain underallocates resource to high-priority targets and overallocates resource

to low-priority targets, relative to the experimental probe probabilities. While providing

an excellent quantitative explanation of the data, it does not provide any explanation for

why participants allocate their resource so.
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Figure 2.4 Modeling results. A. Model predictions. M ± SEM error distributions for data (er-
ror bars) and model predictions (shaded region) for the Proportional, Flexible, and Minimizing Error
models (N = 14). B. Model comparison results. black line: median, grey box: 95% bootstrapped
median CI. The Flexible model fits significantly better than the Proportional (prop) model, but not
significantly better than the Minimizing Error (min error) model.

The Minimizing Error model (right plot of Fig. 2.4A) fits better than the Proportional

model (median AICc [bootstrapped 95% CI]: 49 [21, 99], BIC: 44 [17, 94]) and compara-

bly to the Flexible model (AICc: -7 [-30, -1], BIC: -3 [-26, 3], Fig. 2.4B). Additionally, the

model estimated an allocation of resource similar to the Flexible model (0.46± 0.02, 0.32±

0.01, and 0.22 ± 0.02 for high-, medium-, and low-priority targets, respectively). This sug-

gests that the under- and over-allocation of resources relative to probe probabilities may

be rational, stemming from an attempt to minimize error across the experiment.
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Figure 2.5 Proportion allocated to each priority condition as estimated from the Flexible
model. Each black dot corresponds to one participant. Thicker lines indicate the 0.6, 0.3, and 0.1
allocation to high, medium, and low, respectively. The intersection of these lines is the prediction
for the Proportional model. Observers are underallocating to high priority and overallocating to low,
relative to the actual probe probabilities.

2.5 Discussion

In this study, we investigated the effect of priority on our working memory representations.

Specifically, we asked if people could allocate resources across more than two priority levels

and, if so, what strategy they were using to decide how much to allocate to each item.

We found that people indeed seemed to be allocating VWM resource according to prior-

ity, finding that error decreased significantly and monotonically with increasing priority.

This seems to support a truly graded, flexible representation and ability to flexibly allo-

cate resource. While this seems to be strong evidence against a focus or spotlight of at-

tention (Posner et al., 1980; Treisman & Sato, 1990; Oberauer, 2002) and slots+averaging

models (Zhang & Luck, 2008), it is possible data under this theory could provide graded

representations. For example, a probabilistic spotlight of attention or allocation of slots
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may, over trials, results in a monotonic relationship between priority and error. However,

our model makes predictions on every trial, and it seems unlikely that a flexible resource

model would fit so well if precision was actually two-tiered. An additional model compari-

son can quantitatively test this.

Through computational modeling, we found that people underallocated resource to the

high-priority item and overallocated to the low-priority item, relative to probe probabil-

ities. We were able to describe this in terms of a normative model that assumed people

allocated resource in order to minimize behavioral cost, which was defined as estimation

error to a power. This model is similar to models proposed by others (Bays, 2014; Sims,

2015; van den Berg & Ma, 2018) and explains the data better than a model that assumes

proportional allocation (Klyszejko et al., 2014; Dube et al., 2017), and comparably with

the Flexible model, a highly descriptive but not normative model of how people could be

allocating resource.

Our results identify a single model of how the resource that supports VWM is allocated,

capturing the variability in WM ability across individuals (e.g. Engle, Kane, & Tuholski,

1998; Salthouse, Babcock, & Shaw, 1991) and items (e.g. Adam, Robison, & Vogel, 2018;

Reinhart et al., 2012). There are, however, seemingly inconsistent results suggesting that

inter-participant variability in WM performance is due to differences in control processes,

such as inhibition of irrelevant distractors (Vogel, McCollough, & Machizawa, 2005), may

be explained in terms with the “sensitivity to error” parameter, which is the exponent on

error when calculating behavioral cost. Some participants prefer making a few large errors

in order to maximize the number of extremely precise memory guided saccades, while oth-

ers prefer avoiding large errors at the expense of those precise saccades.

How would precision be allocated if we changed the cost function of the task? Optimal-
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ity is task-dependent, and thus we cannot say people allocate resources optimally with-

out testing different contexts. For example, remembering only a subset of items, relative

to all items, may improve performance on one task but detriment it on another (Bengson

& Luck, 2016; Atkinson, Baddeley, & Allen, 2018). Would people adjust their allocation

strategy according to task demands, or still minimize the behavioral cost of estimation er-

rors?

In the previous and the current chapters, we have demonstrated how people use two pieces

of information, uncertainty and priority, in working memory. Specifically, we showed that

priority is used during the encoding phase to allocate resource in order to minimize loss

and that uncertainty is used during the decision phase to maximize performance. How

does priority affect uncertainty? In theory, priority affects precision, which should affect

uncertainty. In the next chapter, we address these questions.
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2.6 Supplementary

2.6.1 Derivation of C̄estimation(J̄)

In this section, we derive the analytical expression for calculating the expected estimation

cost, for a given J̄ on a given trial. Beginning from Eq. 2.1 in the main text.

C̄estimation(J̄) =
∫
εγ
∫
p(ε|J)p(J |J̄)dJdε

=
∫
εγ
∫
εJe−

ε2J
2 · 1

Γ(k)τ kJ
k−1e−

J
τ dJdε

= 1
Γ(k)τ k

∫ (∫
εγ+1e−

ε2J
2 dε

)
Jke−

J
τ dJ

=
Γ
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)
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∫ ( 2
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∫
Jk−

γ
2−1e−

J
τ

=
Γ
(
γ+2

2

)
2 γ+2

2
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2
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Γ
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Γ
(
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2

)
Γ(k)

(2
τ

) γ
2
,

where k ≡ J̄
τ
and we assumed that γ < 2k.

2.6.2 Maximum-likelihood parameter estimates

I report summary statistics for only the models that provided reasonable qualitative fits to

the data.
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J̄total τ phigh pmed
mean 3.91 0.77 0.49 0.28
SEM 0.75 0.23 0.04 0.02

Table 2.1 Flexible model parameters. Mean and SEM across participants for all parameters in
the Flexible model.

J̄total τ γ
mean 3.97 0.97 0.86
SEM 0.7780 0.2401 0.2303

Table 2.2 Minimizing Error model parameters. Mean and SEM across participants for all
parameters in the Minimizing Error model.
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3 Consistent strategy use across

different behavioral contexts

Consistency is the last refuge of the unimaginative.

Oscar Wilde
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3.1 Introduction

In Chapter 1, we found that people maintained and used an accurate representation of

uncertainty when making change detection decisions. This provided evidence of proba-

bilistic computation in working memory. In Chapter 2, we found that people used priority

information to strategically allocate resource, and they did so in a way that was consistent

with a loss-minimizing strategy. In this chapter, we investigate uncertainty and priority

together, asking if we can replicate and generalize the results of previous chapters in new

contexts.

In this task, we ask three main questions. First, would priority affect uncertainty repre-

sentations? In Chapter 1, we manipulated the mean precision of different ellipses through

the amount of bottom-up information available during stimulus presentation, namely the

ellipse eccentricity. We found that people’s uncertainty reflected the precision with which

each item was remembered. In Chapter 2, we showed that we could also manipulate the

main precision of items through a top-down manipulation, namely priority. Do people’s

representations of uncertainty truly reflect the precision with which they are encoded, or

are they sensitive to different external manipulations of precision?

Second, would people use uncertainty optimally when making working memory decisions?

In Chapter 1, people’s behavior was well fit by a model that assumed they combined infor-

mation optimally. However, a model that did not assume optimality fit the data compara-

bly well. We wanted to test, in an entirely different task, if people would perform in a way

consistent with the optimal strategy.

Finally, would people change their encoding strategy based on task demands? In Chap-
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ter 2, participants allocated resource to minimize a function of saccade error. If we incen-

tivized a different strategy, would people adjust their strategy or continue to minimize er-

ror?

To investigate these questions, we conducted the same delayed-estimation task as in Ch. 2,

with an additional post-estimation wager. The goal of the post-decision wager was to cap-

ture the true target location with a circle that was centered around the participants’ sac-

cade landing. The participant could adjust the radius of the circle. Points were awarded

if the true target was within the circle, and smaller circles were awarded more points. The

addition of this wager was crucial to test our hypothesis.

For the first question, we predicted that priority would affect memory precision, which

would in turn affect the uncertainty people have in the accuracy of their memory-guided

saccade. More conceretely, we predicted people would have, on average, smaller circle sizes

for higher priority items. However, we believe memory precision fluctuates on an item-

specific basis, not only through priority. Thus, we also predict circle size would vary ac-

cording to item-specific fluctuations in memory precision, as measured through saccade

error.

Like confidence reports (e.g. van den Berg, Yoo, & Ma, 2017; Rademaker et al., 2012), the

reported circle size in the wager should be related to memory precision. Unlike confidence

reports, we can test optimal use of uncertainty with the reported circle size. This is be-

cause there is a performance-maximizing circle size an observer should set based on the

cost function and their uncertainty. Note that the optimal use of uncertainty occurs dur-

ing the wager decision stage and is based on the current precision.

This is in contrast to the optimal allocation of resource (our third question), which oc-

73



curs during encoding. In this task, participants are instructed to maximize the amount

of points they earn. Interestingly, the strategy to maximize points results in different re-

source allocation than the strategy to minimize estimation error, which allows us to quan-

titatively test whether people are changing their strategies based on a different experimen-

tal contexts or if they are continuing to minimize error.

3.2 Experimental methods

3.2.1 Participants

Eleven people (5 males, age=28.6, SD=3.03) participated in this experiment. Everyone

had normal or corrected-to-normal vision and no history of neurological disorders. Partici-

pants were naive to the study hypotheses and were paid $10/hour. Participants completed

one or two one-hour sessions. We obtained informed, written consent from all participants.

The study was in accordance with the Declaration of Helsinki and was approved by the

Institutional Review Board of New York University.

3.2.2 Apparatus

Participants were placed 56 cm from the monitor (19 inches, 60 Hz), with their heads in

a chinrest. Eye movements were calibrated using the 9-point calibration and recorded at

a frequency of 1000 Hz (Eyelink 1000, SR Research). Target stimuli were programmed in

MATLAB (MathWorks) using the MGL toolbox (Gardner Lab, Stanford) and were dis-

played against a uniform grey background.
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Participants made behavioral responses using a space bar with their left hand and a cir-

cular knob (PowerMate, Griffin Technology) with their right hand. For eye-tracking, we

applied an online drift correction when the recorded location of center of fixation exceeded

1 degree of visual angle (dva) from the center of the fixation cross. This was because this

experiment provided live visual feedback of the participants’ current fixation and large dis-

crepancies were uncomfortable for the participant and resulted in imprecise data.1

3.2.3 Trial procedure

The trial sequence in this experiment was identical to the experiment in Chapter 2 until

the response cue. Each trial (Fig. 3.1) began with a 300 ms increase in the size of the fix-

ation symbol, an encircled fixation cross. This was followed by a 400 ms endogenous pre-

cue, consisting of three colored wedges presented within the fixation symbol, each of which

angularly filled one quadrant. The radial sizes and colors of the wedges corresponded to

probe probabilities of 0.6, 0.3, and 0.1, respectively. (While visualized as being orange, yel-

low, and green wedges, the actual colors were pink, yellow, and blue). The quadrant with

a probe probability of 0.0 did not have a wedge.

The precue was presented for 400 ms; this was followed by a 700 ms interstimulus inter-

val, then by the targets, presented for 100 ms. The targets were four dots, each in sepa-

rate visual quadrants. The dots were presented at approximately 10 degrees of visual angle

from fixation, with random jitter of 1 degree of visual angle to each location. The location

of the targets in polar coordinates were pseudo-randomly sampled from every 10 degrees,

avoiding cardinal axes.

1 This was not a problem in the experiment in Chapter 2 because the corrective saccade provided a
measure of drift, which we used to correct offline.
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Figure 3.1 Trial sequence. Participants saw a precue indicating the probe likelihoods of each of the
items, maintained the location of them over a delay period, made a memory-guided saccade to the re-
membered location of a probed dot, then completed a post-decision wager. In the wager, participants
adjusted the radius of the circle, with the goal of enclosing the true target within the circle. They
were only awarded points if the true target location was within the circle, with the amount of points
decreasing exponentially with circle radius. Points awarded as a function of circle radius shown in top
right.
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This was followed by a variable delay, chosen with equal probability from the range be-

tween 1000 and 4000 ms in 500 ms increments. A response cue appeared afterward, which

was a white wedge that filled an entire quadrant of the fixation symbol. Simultaneously

with the response cue, a red dot appeared at the location of the participants’ fixation as

measured online by the eye tracker (Graf, Warren, & Maloney, 2005). Because of eye-

tracker noise, the red dot occasionally appeared in a slightly different location than where

the participant was fixating. In these cases, participants were instructed to adjust their

gaze such that the red dot was at the remembered location, and press the space bar to in-

dicate that this was their intended saccade endpoint. After completing this response, par-

ticipants performed a post-estimation wager. A circle appeared, centered at the saccade

endpoint. Participants received points based on the size of the circle, such that a smaller

circle corresponded to more points. Participants were only rewarded points if the true tar-

get was within the circle. The amount of potential points awarded were displayed as par-

ticipants changed the radius of the circle. The number of points awarded was 120e−0.4r, in

which r was the radius of the circle in dva (this is illustrated in the top right of Fig. 3.1).

The circle size report served as a measure of memory uncertainty because participants

were incentivized to make smaller circles when their memory was more certain, in order

to obtain more points. Participants were incentivized to maximize points with additional

monetary reward.

Participants completed between 8 and 19 forty-trial runs over one or two one-hour ses-

sions.
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3.2.4 Data processing

Processing and manual scoring of eye movement data was performed in an in-house MAT-

LAB function-graphing toolbox (iEye). Eye position was extracted from iEye. We ex-

cluded trials in which a) participants were not fixating in the middle of the screen during

stimulus presentation, b) saccades were initiated before 100 ms or after 1200 ms after the

response cue onset, c) pupil data during the response period were missing, d) participants

made a saccade to the wrong quadrant, ignoring the response cue, or e) primary saccade

error was over 10 dva. After data exclusion, there was a total of between 320 and 760 tri-

als were completed across participants.

3.3 Modeling methods

The model prediction, fitting, and comparison methods are closely aligned with those in

Chapter 2. We reiterate our methods below, but more explanation and justification can be

found in the Chapter 2 Section 2.3.

3.3.1 Encoding and decision stage

In this experiment, we obtained two measures of behavior on every trial: the memory esti-

mation and the circle wager. We model target location s as a two-dimensional vector cor-

responding to the target’s horizontal and vertical coordinates. We denote the observer’s

estimate (saccade endpoint) of s by x. We assume x follows a two-dimensional Gaussian

distribution with mean s and covariance matrix 1
J
I, where J is a scalar. We assume that

the observer’s estimation, ŝ is exactly x. We conveniently ignore motor and response noise
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(and well known saccade biases), recognizing that the variability in the VP model may ac-

count for these.

We assume that on every trial, the observer chooses a circle radius r noisily around the

value that maximizes the expected utility (EU) of that trial. The EU is calculated as the

product between the utility of setting a circle with radius r and the probability that the

true stimulus lies within the circle bounds (i.e., a hit). We define utility as the number of

points awarded for circle radius r, raised to an exponent α that accounts for risk prefer-

ences, 120e−rα. An α > 1 corresponds to risk-seeking behavior (corresponding to smaller

circles than the optimal observer would set), while an α < 1 corresponds to risk-averse

behavior (corresponding to larger circles than the optimal observer would set).

The probability of a hit is equivalent to the bounded integral of the posterior p(s|x) over

the region described by the circle. For a two-dimensional Gaussian distribution, this is

equivalent to a cumulative Rayleigh distribution evaluated at r:

phit(r, J) ≡ p(ε ≤ r|J)

=
(

1− e− r
2J
2

)
.

We assume that the observer’s noisily choose the optimal circle radius, following a softmax

rule. The probability of choosing r is

p(r|J) ∝ exp (βEU(r, J))

= exp (β · utility(r) · phit(r, J))

= exp
(
β · 120e−rα

(
1− e− r

2J
2

))
.
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The observer is thus most likely to choose the maximum EU, with some noise determined

by β, the inverse temperature parameter: a lower β corresponds to higher decision noise.

In this formulation, we are assuming that the observer knows the point function. This may

be a reasonable assumption because participants completed training on the task, and the

potential points awarded were always presented when participants were making the post-

estimation wager decision.

3.3.2 Resource allocation strategies

As defined in Chapter 2 Section 2.3.2, we test the Proportional, Flexible, and Minimizing

Error model. We additionally test the optimal model for this task, which is to maximize

the amount of points earned on the wager.

3.3.2.1 Proportional model

In the Proportional model, observers allocate resources equivalently to the experimental

probe probabilities, i.e., phigh = 0.6, pmed = 0.3, plow = 0.1. Its four free parameters are total

resources J̄total, scale parameter τ , risk preference α, and inverse noise temperature β.

3.3.2.2 Flexible model

In the Flexible model, the proportions allocated to each priority condition are fit as free

parameters. Its six free parameters are then J̄total, τ , α, β, phigh, pmed.
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3.3.2.3 Minimizing Error model

In the Minimizing Error model, observers allocate resource in order to minimize expected

behavioral loss across the experiment exactly as described in Chapter 2. While perhaps

optimal in the earlier study, this strategy is myopic for the current experiment: the ob-

server does not take into account the subsequent decision they must make, but first maxi-

mizes performance in terms of estimation error, then maximizes EU. Its five free parame-

ters are J̄total, τ , γ, α, and β. The optimal resource allocations p∗high, p∗med, p
∗
low depend only

on parameters J̄total, τ , and γ.

3.3.2.4 Maximizing Points model

While observers in all models maximize the EU on every trial for a given J , the Maximiz-

ing Points model observer additionally allocates resources in order to maximize the ex-

pected utility across the entire experiment. We define the cost of a single trial as the nega-

tive EU on that trial:

Cwager(r|J) = −
(

1− e− r
2J
2

)
· 120e−rα.

The expected cost on that trial, for a given J , is an average of the costs for all possible

radii r reported on that trial multiplied by its probability. However, J itself is a random

variable, drawn from a distribution determined by a priority-specific J̄ . Thus, we must
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also marginalize over J to calculate the expected cost of a trial in each priority condition:

C̄wager(J̄) ≡ E(Cwager|r, J)

=
∫
Cwager(r|J̄)p(r|J)dr

=
∫∫
−EU(r, J)p(r|J)p

(
J
∣∣∣ J̄ , τ) drdJ

We numerically integrated over r and J to obtain the C̄wager for a given J̄ . The overall ex-

pected cost (OEC) for this experiment is thus:

OEC(phigh, pmed, plow) = 0.6C̄(phigh · J̄total) + 0.3C̄(pmed · J̄total) + 0.1C̄(plow · J̄total). (3.1)

In the Maximizing Points model, the cost-minimizing proportions p∗high, p∗med, and p∗low are

a function of all parameters J̄total, τ , α, and β. We obtain these values through the opti-

mization methods described in Chapter 2.

3.3.2.5 Comparison of different models

In order to find the optimal resource allocation, the Minimizing Error and Maximizing

Points observers must minimize the overall expected cost. For both models, this value is

the sum of the expected error for each priority, weighted by their probe probability (Equa-

tion 3.1). The weight reflects the true frequency of times each priority item is probed

throughout the experiment. Finding the minimum OEC becomes somewhat of a balanc-

ing game, where the cost for one item will be lowered at the expense of the other, and the

cost of high-priority items contributes 2 and 6 times more to the OEC than the medium-
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and low-priority items do, respectively. Figure 3.2A shows how each model minimizes the

overall expected cost, and how their predictions differ based on the shape of this function.

For example, for the Minimizing Error model, the OEC would decrease substantially by al-

locating slightly more resource to the low-priority item from the high-priority item. Thus,

optimal allocation according to the Minimizing Error model may favor more equal alloca-

tion than proportional. The Maximizing Points model would not benefit from this same

trade off. You can see in the diagram that cost of the low-priority item would decrease

more than the high-priority item would increase, but would not lead to a lower OEC be-

cause the high-priority item is weighted so much more. Optimal allocation according to

the Maximizing Points model thus results in allocating most of the resource to the high

priority item at the expense of the low priority item, compared to proportional. These

trends are true for low total precision J̄total; the optimal allocation moves toward propor-

tional allocation with higher J̄total (Fig. 3.2B).

3.3.3 Model prediction

We predict the probability of the memory estimation ŝ and wager circle size r given the

stimuli. We assume these two data points are conditionally independent.

p(ŝ, r | s) =
∫∫

p(ŝ | x)p(x | s, J)dx p(r | J)p(J | J̄ , τ)dJ

=
∫
p(ŝ | s, J)p(r | J)p(J | J̄ , τ)dJ

=
∫

Rayleigh
(
ε; 1√

J

)
exp

(
β · 120e−rα

(
1− e− r

2J
2

))
p(J | J̄ , τ)dJ

We compute this value by numerically integrating over J with 500 equally spaced bins.
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Figure 3.2 Model didactics: comparing optimal resource allocation of Minimizing Error and
Maximizing Points models. A. The expected cost as a function of precision, J , for the Minimizing
Error (left) and Maximizing Points model (right). A hypothetical resource allocation choice is illus-
trated through by the vertical colored lines, indicating the precision associated with the low- (green),
medium- (yellow), and high- (orange) items. The overall expected cost (OEC) is the sum of the ex-
pected cost for each priority (the value of the cost function at the vertical lines) weighted by their
probe probability. The green step illustrates the behavioral benefit for allocating more resource to the
low-priority item from the high-priority item; the orange step illustrates the corresponding behavioral
detriment to the high-priority item. For the Minimizing Error model, the OEC would decrease by
allocating slightly more resource to the low-priority item. Thus, optimal allocation according to the
Minimizing Error model favors more equal allocation. For the Maximizing Points model, OEC would
increase by allocating slightly more resource to low-priority item from the high priority item. Thus,
optimal allocation according to the Maximizing Points model favors more extreme differences in pro-
portions allocated. B. Optimal resource allocation as a function of increasing total resource, J̄total,
for Minimizing Error (green to purple) and Maximizing Points model (yellow to red). Each side of
the triangle corresponds to the probe probability of or proportion allocated to each priority condition.
With a lower J̄total (illustrated by the green dot for Minimizing Error model and the yellow dot for
Maximizing points model), the models make very different predictions. The Minimizing Error model
predicts more equal allocation than proportional to the probe probability, while the Maximizing Points
model predicts dropping the low-priority target. As J̄total increases, both models predict an allocation
closer to the experimental probe probabilities.
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3.3.4 Parameter estimation

We use Bayesian Adaptive Direct Search (BADS; Acerbi & Ma, 2017) to estimate, for each

participant and model, the parameter combination θ that maximizes the likelihood of the

data given the model. We use 50 different starting positions, using latin hypercube sam-

pling, to minimize the probability of finding a local minimum. We took the maximum of

all the runs as our estimate of the maximum-likelihood, and the corresponding parameter

combination as our ML parameter estimates.

3.3.5 Parameter and model recovery

To validate the data-generating and model-fitting code, we performed parameter and

model recovery. The results of our parameter and model recovery suggest no problems

with interpreting parameters of our models or the model comparison.

3.3.6 Model comparison

We compared models using the corrected Akaike Information Criterion (AICc; Hurvich &

Tsai, 1987) and the Bayesian Information Criterion (BIC; Schwarz, 1978). Both AICc and

BIC penalize models with more parameters, but BIC is more conservative.
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3.4 Results

3.4.1 Behavioral results

Our predictions for this experiment were the following: a) estimation error decreases with

increasing priority, b) circle size decreases with increasing priority, and c) estimation error

correlates positively with circle size within each priority level. To test the first two predic-

tions, we conducted a repeated-measures ANOVA with priority condition as the within-

subject variable. The ANOVA for circle size violated the assumption of sphericity, so we

implemented a Greenhouse-Geisser correction. We conducted Spearman correlations for

each priority condition, computing correlations across participants as well as for individual

participants. For the aggregated correlation, we removed any participant-specific main ef-

fects by standardizing the data (M = 0, SD = 1) for each participant before aggregating

data for each priority condition.
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Figure 3.3 Main behavioral results. Error bars show M ± SEM for memory error (left) and circle
radius (middle) across priorities for 11 participants; both measures decrease with increasing priority.
These measures are positively correlated within priority conditions (right), suggesting that error and
circle size have a common cause, namely fluctuations in precision.
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We confirmed all three predictions. First, estimation error decreased monotonically with

increasing priority (F (2, 20) = 12.5, p < 0.001, η2 = 0.55; left plot of Fig. 3.3), indi-

cating that participants allocated more resource to higher priority targets. Second, the

radii of the circle wagers decreased monotonically with increasing priority (F (1.3, 12.9) =

10.60, p < 0.005, η2 = 0.51; middle panel of Fig. 3.3), indicating that participants had

higher memory certainty in higher priority trials. Third, estimation error and circle size

were correlated within each priority level across participants (ρ0.6 = 0.22, p < 0.001; ρ0.3 =

0.28, p < 0.001; ρ0.1 = 0.18, p < 0.001; right panel of Fig. 3.3), indicating that people

have a single-trial representation of their uncertainty independent of the priority manip-

ulation, as suggested by earlier work (Fougnie et al., 2012; Suchow et al., 2017). Correla-

tions at the individual level resulted in similar correlation values (M ± SEM : ρ0.6 =

0.22 ± 0.04, ρ0.3 = 0.27 ± 0.03, ρ0.1 = 0.16 ± 0.04), though not all correlations were signifi-

cant.

These correlations, however, could be driven by some other factor, such as stimulus loca-

tion or trial delay time. For example, in orientation perception, targets with orientations

closer to the cardinal axis are perceived more accurately than obliquely-oriented objects

(Appelle, 1972; Furmanski & Engel, 2000; Girshick, Landy, & Simoncelli, 2011; Pratte,

Park, Rademaker, & Tong, 2017). There could be a similar effect in working memory, and

knowledge of this effect could be driving the measured within-priority correlation. An ef-

fect of delay on error, and knowledge of this, could also be driving the correlation. To test

these hypotheses, we conducted two permutation tests for each participant and priority

level.

First, we completed a regression to see if there was a relationship between either distance

from cardinal axis (up to 45◦) or delay and estimation error. The oblique effect in memory
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of locations of objects was inconclusive. For seven of eleven participants, stimulus loca-

tion did not significantly predict error (p > 0.05), but the remaining four participants had

greater error when moving farther from the cardinal axes (M ± SEM regression weights:

1.40 ± 0.84, p < 0.05). Delay did not significantly predict error for nine of eleven partic-

ipants (p > 0.05), and predicted an 0.10 and 0.11 dva increase in error for every second

increase in delay for the other two participants (p < 0.01).

Because there is not a clear relationship between these variable and error, we cannot

simply regress out any relationship between the two. However, there may still be some

stimulus-dependent relationship that can still be driving the correlation between error and

circle size. We decided to conduct a permutation test, which allows us to investigate this

question without needing to describe or parameterize the relationship between the vari-

ables of interest. Below, I explain the permutation test to test if stimulus location affected

the correlation. For each participant and priority condition:

1. Bin error and circle size data according the angular distance of the target from the

horizontal axis (10◦ to 80◦ in 10◦ increments. Note that 10◦, 170◦, 190◦, and 350◦ are

all 10◦ away from horizontal axis)

2. Permute circle size within each bin

3. Combine bins

4. Compute correlation between error and circle size Repeat steps 2 through 4 a thou-

sand times

In step one, we combined data according to their angular distance from horizontal in

an effort to increase the number of trials per bin. This grouping assumes that the main
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stimulus-dependent noise would be relative to the cardinal axes, not any hemispheric dif-

ferences. In an ideal scenario, we would then be able to conduct a correlation within each

bin. However, there were as few as two trials in one bin, so computing a correlation for

each bin was not feasible.

For step two, we performed a special type of permutation called a derangement, in which

no element is placed its original location. We conducted a derangement because it is more

robust to small sample sizes than a regular permutation. For example, in a regular permu-

tation of two data points, half of the time you would get the original configuration, leading

to biased results.

By completing permutations on multiple small bins within each dataset, the recombined,

permuted dataset maintains any correlations that are stimulus-location driven, while re-

moving any relationship driven by a knowledge of internal memory fluctuations. Therefore,

if the correlation was largely due to the stimulus location, then the correlation of the per-

muted data would still be positive. If, on the other hand, the correlation was driven by

internal fluctuations that were independent of the location of the stimulus, the positive

correlation observed in the non-permuted data would be significantly reduced in the per-

muted data.

I completed a very similar permutation test to test an effect of delay on the correlation, by

binning data by participant, priority, and delay time (1 to 4 seconds in 0.5 second incre-

ments); deranging the circle sizes within each bin; combining data across delay bins; then

computing the correlation between error and circle size, resulting in a correlation for each

participant and priority condition. I repeated this process 1000 times, to get a null distri-

bution of correlation coefficients.
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To test if the true correlation was significantly higher than the null correlations, we con-

ducted a Wilcoxon signed-rank test between the medians of each null correlation distri-

bution (for each priority and subject) and the respective true correlations. The actual

correlations (M ± SEM : 0.29 ± 0.04) were significantly higher than the median of the

correlations obtained in the null distribution when permuting based on stimulus location

(M ± SEM : −0.007 ± 0.006; Wilcoxon signed-rank test, z = −4.69, p < 1e − 5) or delay

time (M ± SEM : −0.004 ± 0.004; z = −4.53, p < 1e − 5), suggesting that the correla-

tion within each priority condition was driven by knowledge of internal fluctuations in the

quality of the memory representation above and beyond any location- or delay-dependent

variation.

3.4.2 Modeling results

We again tested the Proportional model and Flexible model, jointly fitting the estimation

data and the post-estimation wager data. We again found that the Proportional model did

not provide a good fit to human data and the Flexible model provided an excellent fit to

the data (first two columns of Fig. 3.4). As before, the Flexible model suggests that the

brain underallocates resource to high-priority targets and overallocates resource to low-

priority targets relative to experimental probe probabilities. The proportion allocated to

the high-, medium-, and low-priority targets were estimated as 0.44± 0.02, 0.31± 0.02, and

0.25± 0.02, respectively (Fig. 3.5).

Unlike in the first experiment, optimal performance in this experiment requires maximiz-

ing points. This Maximizing Points model has qualitatively different properties from the

Minimizing Error model. An observer that maximizes points would receive more points by

ignoring the low-priority targets completely in order to remember the high-priority targets
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Figure 3.4 Model predictions. Color indicates priority condition — orange: 0.6, yellow: 0.3, green:
0.1. Fits of four models (columns) to error distribution (top), circle radius distribution (middle), and
correlation between the two (bottom). M ± SEM shown for data (error bars) and model predictions
(shaded region).

91



0
0

0

0.2

0.2

0.2

0.4

0.4

0.4

0.6

0.6

0.6

0.8

0.8

0.8

1

1

1

medium

hig
h low

Figure 3.5 Proportion allocated to each priority condition as estimated from the Flexible
model. Each black dot represents one participant. Thicker lines indicate the 0.6, 0.3, and 0.1 alloca-
tion to high, medium, and low, respectively. The intersection of these lines is the prediction for the
Proportional model. Again, observers are underallocating to high priority and overallocating to low,
relative to the actual probe probabilities.

better, while an observer that minimizes error would allocate it more evenly across targets.

Because these two strategies conflict, we are able to test whether the intrinsically-driven,

error-minimizing strategy that people seem to be using in the absence of reward can with-

stand being put in conflict with an external incentive. The Maximizing Points model fit

very poorly, indicating that participants were not allocating resource in order to earn the

most points (Proportional model: median ∆AICc: -75 [-109, -26], ∆BIC: -75 [-109, -26];

Flexible model: ∆AICc: -156 [-308, -94], ∆BIC: -148 [-300, -86]; third column Fig. 3.4).

The Minimizing Error model fit the data substantially better than the Proportional model

(median ∆AICc: 55 [20, 106], ∆BIC: 50 [17, 102]) and the Maximizing Points model

(∆AICc: 140 [85, 249], ∆BIC: 137 [81, 245]) and about as well as the Flexible model

(∆AICc: -16 [-44, -5], ∆BIC: -12 [-40, 0]; fourth column Fig. 3.4). The Minimizing Er-
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ror model fitted the proportions of resource allocated to high-, medium-, and low-priority

targets as 0.52 ± 0.02, 0.32 ± 0.01, and 0.16 ± 0.01, respectively, similar to the allocation

estimated in the Flexible model. Formal model comparison shown in Figure 3.6.
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Figure 3.6 Model comparison results. Model comparison difference between the Flexible model
and all other models. dots: individual participant model differences. black line: median, grey box:
95% bootstrapped median CI. The Flexible model fits significantly better than the Proportional and
Maximizing Points (MP) models, but not significantly better than the Minimizing Error (ME) model.

3.5 Discussion

In this chapter, we study both uncertainty and priority, asking if we could replicate and

generalize the results found in the previous two chapters. Specifically, we asked if priority

affected uncertainty representations, if people would use uncertainty optimally in another

task, and if changing the context in which priority was used would lead to different allo-

cation strategies. Participants completed a four-item memory-guided saccade task with a

post-estimation wager.
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3.5.1 Summary of results

First, priority affected the precision with which items were remembered, with remarkable

consistency to the effects found in Ch. 2. We found that participants maintained a repre-

sentation of uncertainty that was correlated with error within each priority condition. This

correlation could not be explained by stimulus location or delay time, suggesting people’s

circle size truly represented their item-specific uncertainty. This corroborates that people’s

confidence typically track with accuracy (e.g., Rademaker et al., 2012; Suchow et al., 2017;

van den Berg et al., 2017).

Second, we found that participants’ circle size data was well described by an optimal

Bayesian model, in which observers combined uncertainty information with the cost func-

tion in order to maximize performance on the wager task. There are a couple limitations

to the interpretation of this results. First, we did not test any other models for how some-

one could be making this decision, so it is possible that data could be better described by

a suboptimal model. Second, we assume participants learned the cost function, but it is

possible that people did not. However, we were able to show in two different tasks (Ch. 1

and here) with two different cost functions and decisions that people maintained and used

uncertainty in a way that was consistent with the Bayes-optimal observer.

Third, we found that people continued to be best fit by the Minimizing Error model, de-

spite performance on this task being defined by the points earned on the wager. In fact,

the model comparison results were almost identical to that of Chapter 2; the Minimiz-

ing Error model fit just as well as the Flexible model and substantially better than the

Proportional model. However, the fact that the Flexible model fit well in Ch. 2 does not

trivially imply that it would fit the data well here. We made several assumptions when
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extending the model to account for circle size data that did not need to apply to human

data. First, we assumed that error and uncertainty are generated from the same precision.

Second, we assumed people knew their uncertainty. Finally, we assumed that observers set

the optimal circle size, given a precision.

Why might people be minimizing error instead of maximizing points? Additionally, in

both experiments in this and the previous chapter, we provided feedback on the actual lo-

cation of the target. This may have provided information for participants to learn a map-

ping between resource allocation and error.

However, people may be behaving rationally. Perhaps people find minimizing the errors

of our memory intrinsically rewarding. Indeed, extrinsic rewards influence the metrics of

saccades in humans and monkeys (Chen, Chen, Zhou, & Mustain, 2014; Takikawa, Kawa-

goe, Itoh, Nakahara, & Hikosaka, 2002). For instance, extrinsic rewards affect both the

velocity of saccades as well as neural activity in dopamine-associated reward circuits (Kato

et al., 1995), and they modulate neural activity in cortical areas that represent the goals

of saccade plans (Platt & Glimcher, 1999). Perhaps the intrinsic reward associated with

veridical memory eclipses the extrinsic reward associated with gaining more points, which

would explain why people minimized error instead of maximized points in the second ex-

periment. It would be interesting to see if we could have biased behavior toward the Max-

imizing Points strategy by providing a leader board or giving a monetary bonus based on

the performance in the post-estimation wager.

Additionally, minimizing memory error might be computationally easier than maximiz-

ing points because it does not require the observer to think and optimize performance two

steps ahead. The amount that performance may improve from maximizing points may not

be worth the computational and metabolic cost.
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3.5.2 Limitations and future work

While the Minimizing Error model provided a good fit to the data, it is possible that peo-

ple could be doing something much simpler. For example, these data might be explained

by a regression toward the mean or probability distortion (Kahneman & Tversky, 1979).

Additionally, we tested only power law functions, but more robust loss functions, for ex-

ample Huber loss (Huber, 1964) could describe data better. Future studies should investi-

gate if resource allocation abides by the Minimizing Error model across a variety of experi-

mental probe probabilities and reward contexts (e.g., monetary reward in Klyszejko et al.,

2014).

In this and the previous chapter, we only compared models using AICc and BIC of the

maximum-likelihood estimation. All models are nested within the Flexible model, so the

Flexible model is guaranteed to fit as well as any other model, in terms of the maximum

log-likelihood. AICc and BIC may not sufficiently penalize this model and thus bias re-

sults to favor this model. Indeed, I found in model recovery that the Flexible model some-

times was favored in datasets generated from the Minimizing Error model2. Perhaps com-

paring data using marginal likelihoods or cross validation, in which model flexibility is

punished more, would provide a better measure of parsimony.

In our experiment, we have a no-priority item which is never probed. Do people still main-

tain a representation of this? I think so. People use configurational structure when re-

membering stimuli (e.g. Brady & Tenenbaum, 2013), even though we ignore this aspect

2 I don’t mean to lack transparency for not reporting these results in my dissertation. I simply ran
out of time! Model recovery was successful except that the Flexible model fit better for around
half of the datasets generated by the Minimizing Error model. However, that doesn’t affect the
interpretation of the modeling results.
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in our computational models. People may use compression strategies that, while facilitat-

ing memory, may also produce behavioral biases (e.g. Nassar, Helmers, & Frank, 2018).

We could exploit these effects. For example, we could design a task in which participants

make a response that depends on all remembered stimuli (e.g., ensemble statistics), and

see if the responses are influenced by the no-priority item. With neuroimaging, we could

investigate whether there is a representation of the no-priority item during a WM delay. I

am interested in pursuing this question in the future.

3.5.3 Conclusions

In this chapter, we linked concepts from previous chapters, asking about how priority and

uncertainty interacted in a working memory task. We found remarkable consistency be-

tween the previous and current results, finding that priority affects memory precision and

that people maintain and use uncertainty in a way consistent with the optimal strategy.

We additionally replicated that people allocate resource consistent with a loss-minimizing

strategy, although that was not the optimal strategy in this task. In the next chapter, we

attempt to begin linking some of these computational concepts in the brain, by asking how

priority is represented in the brain. during a working memory delay.
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3.6 Supplementary

3.6.1 Maximum-likelihood parameter estimates

I report summary statistics for only the models that provided reasonable qualitative fits to

the data.

J̄total τ α β phigh pmed
mean 0.99 0.10 1.47 0.85 0.44 0.31
SEM 0.19 0.03 0.35 0.19 0.02 0.02

Table 3.1 Flexible model parameters. Mean and SEM across participants for all parameters in
the Flexible model.

J̄total τ α β γ
mean 0.88 0.10 1.54 1.23 0.56
SEM 0.17 0.04 0.36 0.42 0.29

Table 3.2 Minimizing Error model parameters. Mean and SEM across participants for all
parameters in the Minimizing Error model.
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4 Priority-modulated delay-period

activity in visual cortex

When I was young, I said to God, ‘God, tell me the mystery of the universe.’ But God
answered, ‘That knowledge is for me alone.’ So I said, ‘God, tell me the mystery of the
peanut.’ Then God said, ‘Well George, that’s more nearly your size.’ And he told me.

George Washington Carver

CABBAGE, n. A familiar kitchen-garden vegetable about
as large and wise as a man’s head

Ambrose Bierce, The Devil’s Dictionary
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4.1 Introduction

In previous chapters, we investigated the representation of priority and uncertainty in

working memory. We showed that people maintain and use an accurate representation

of uncertainty in working memory consistent with an optimal Bayesian observer (Ch. 1,

3). We showed that people use priority information to allocate resource to minimize their

memory estimations (Ch. 2, 3), despite being incentivized in Ch. 3 to maximize points on

a post-estimation wager. The goal of this chapter is to begin linking some of these compu-

tational concepts, priority, precision, and uncertainty, to neuroscience. In this chapter, we

sppecifically investigate how priority is represented in the brain during a working memory

delay.

Working memories are maintained through sustained, elevated delay-period activity. This

was first demonstrated in the dorsolateral prefrontal cortex (Fuster & Alexander, 1971;

Funahashi et al., 1989), but has since shown in sensory and motor areas (e.g. Curtis &

D’Esposito, 2003; Postle, 2006; D’Esposito & Postle, 2015; D’Esposito, 2007; Y. Xu, 2017;

Harrison & Tong, 2009). These data support a sensory recruitment theory, in which items

are maintained by the same populations that encode them, rather than having to move

or copy that information elsewhere. Frontal areas are then thought to play a role in top-

down, goal-directed modulation of more sensory areas (Curtis & D’Esposito, 2003; Sreeni-

vasan et al., 2014).

Because many frontal, parietal, and occipital areas of the brain are retinotopically orga-

nized, maintenance of information corresponds to sustained delay-period activity in the

subpopulation sensitive to that items location. In a variety of tasks and brain areas, at-

tention modulates this neural activity. This is typically through an increased activity of
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neural populations tuned to the attended location, some research showing this effect more

in frontoparietal than visual areas (Kastner et al., 1999; Buracas & Boynton, 2007; Gandhi

et al., 1999; Gouws et al., 2014; Jerde et al., 2012; Serences & Yantis, 2007; Somers et al.,

1999; Rahmati et al., 2018; Sprague et al., 2018; Saber et al., 2015; Nobre et al., 2004).

Because attention affects, physiologically, the activity of subpopulations during the delay

and, behaviorally, the precision with which items are remembered (Bays & Husain, 2008;

Emrich et al., 2017; Klyszejko et al., 2014, Ch. 2, Ch. 3), perhaps the magnitude of neu-

ral activity is a neural marker of precision. There is some support for this in neuroimaging

and population coding models. Stimulus-independent, trial-to-trial fluctuations of neu-

ral activity in frontal areas have been shown to be positively correlated with fluctuations

in performance (Sadaghiani, Hesselmann, Friston, & Kleinschmidt, 2010; Sapir, d’Avossa,

McAvoy, Shulman, & Corbetta, 2005; Curtis, Rao, & D’Esposito, 2004; Rahmati et al.,

2018). Population coding models implement memory precision of items through neural

gain, which is able to account for human data on prioritization (Seung & Sompolinsky,

1993; Ma, Beck, Latham, & Pouget, 2006; Bays, 2014).

In this chapter, we investigate the resolution of this neural gain, asking if the amplitude

of delay-period activity would reflect multiple levels of priority during a working memory

delay. To test this, we used the same memory-guided saccade task used in Chapter 2 and

3. We hypothesized that priority is represented through the amplitude of the same pop-

ulations that maintain that object’s location. We defined ten visual, parietal, and frontal

regions of interests (ROIs) known to be retinotopic and involved in working memory: V1,

V2, V3, V3AB, IPS0, IPS1, IPS2, IPS3, iPCS, and sPCS. In each ROI, we tested our hy-

pothesis by comparing the amplitudes of delay-period BOLD activity in the populations

maintaining the location of each of the four VWM items.
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4.2 Methods

4.2.1 Participants

Eleven people (5 males, mean age=31.9, SD=6.8, 5 authors) participated in this exper-

iment. Everyone had normal or corrected-to-normal vision and no history of neurologi-

cal disorders. Non-author participants were naive to the study hypotheses and were paid

$30/hour. We obtained informed, written consent from all participants. The study was in

accordance with the Declaration of Helsinki and was approved by the Institutional Review

Board of New York University.

Experimental procedure Participants completed a memory-guided saccade task (Fig

4.1). The fixation symbol in this experiment was an encircled fixation cross, with four

equally-spaced concentric arcs within each quadrant1. Each trial began with a 100 ms in-

crease in the size of the outer circle of the fixation symbol. This was followed by a 700 ms

endogenous precue which indicated the probe probability of each item. Probe probability

was indicated through the number of illuminated arcs: all four arcs turned white in the

quadrant corresponding to the 0.6 item, three arcs for the 0.3 item, two arcs for the 0.1

item, and none for the 0.0 stimulus. The precue was followed by a 100ms interstimulus in-

terval, then by the items for 700 ms. The items were four white dots, one in each visual

quadrant. Items were presented randomly between 9 and 10 degrees of visual angle (dva)

from fixation. The location of the targets in polar coordinates were pseudo-randomly sam-

pled from every 10 degrees, avoiding cardinal axes.

1 The precue differed from previous experiment to ensure that visually-evoked responses of the
precue were equivalent across priorities.
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The item presentation was followed by a 10100 ms delay. A response cue appeared after-

ward, which was a white wedge around the quadrant of the fixation symbol corresponding

to the target. Participants made a memory-guided saccade to the remembered dot location

within the corresponding quadrant of the screen.

After the saccade, the actual dot location was presented as feedback and the participant

made a corrective saccade to that location. After 800 ms, the feedback disappeared, par-

ticipants returned their gaze to the central fixation cross, and a variable inter-trial interval

began. The inter-trial interval was pseudorandomly drawn from the following three times:

8.8, 10.1 or 11.4 seconds. This was necessary to be able to disassociate different event-

related activity in fMRI. Each participant completed one one-hour session consisting of

10-14 runs consisting of 12 trials each; they completed a total of 120-168 trials.

4.2.2 Experimental methods

4.2.3 Oculomotor methods

We recorded eye location data in the scanner at 1000 Hz (Eyelink 1000, SR Research, On-

tario, Canada), beginning with a nine-point calibration and validation scheme. We pro-

cessed the eye movement data using an in-house MATLAB function graphing toolbox

(iEye). This toolbox transformed raw gaze positions into degrees of visual angle (dva), re-

moved “extreme values” (defined as values that were larger than the screen size), removed

artifacts due to blinks, smoothed gaze position with a Gaussian kernel with 5 ms SD, and

computed the velocity at each time point. Saccades were defined as eye movements with

the following criteria: velocity ≥ 30 dva/s, duration ≥ 8 ms, and amplitude ≥ 0.25 dva.

For each trial, data were additionally drift corrected and calibrated to account for mea-
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fixation
100 ms

cue
700 ms

ISI
100 ms

targets
700 ms

delay
10100 ms

response
800 ms

feedback
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time

0.1

0.3

0.6

0.0
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Figure 4.1 Trial sequence. Before targets were presented, participants viewed a precue that indi-
cated the probe probabilities of the four targets by the number of arcs highlighted within the fixation
symbol. After the delay, one item was probed for response when a white arc appeared at the outer
edge of one quadrant of the fixation symbol. Participants made a memory-guided saccade to the
remembered location of the target, then made a corrective saccade when the true target location was
presented.
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surement noise, such that the gaze position during known trial epochs (i.e., fixation and

response period) were at the correct location. Trials were excluded if the participant was

not fixating during the delay period or no saccades were found during the response epoch.

This resulted in removing between 2% and 50% of trials per subject.

4.2.4 MRI acquisition

All functional MRI data and distortion scans were acquired on a 3T Siemens Prisma MRI

system at the Center for Brain Imaging at New York University, using the CMRR Multi-

Band Accelerated EPI Pulse Sequences (Release R015a; Moeller et al., 2010; Feinberg et

al., 2010; J. Xu et al., 2013). To acquire the functional BOLD contrast images, we used

the following settings: Multiband (MB) 2D GE-EPI with MB factor of 4, 56 2-mm in-

terleaved slices with no gap, voxel size 2mm, field-of-view (FoV) 208 x 208 mm, no in-

plane acceleration, repetition time (TR) 1300 ms, echo time (TE) 42 ms, flip angle 66 deg,

Bandwidth: 1924 Hz/pixel (0.64 ms echo spacing), posterior-anterior phase encoding, with

fat saturation and “brain” shim mode.

Distortion mapping scans, used to estimate the distortions present in the functional EPIs,

were acquired with normal and reversed phase encoding after run 1, 3, 5, 7, and 9. We

used a 2D SE-EPI with readout matching that of the GE-EPI and same number of slices,

no slice acceleration, TE/TR: 45.6/3537 ms.

We used T1-weighted MP-RAGE scans (0.8 x 0.8 x 0.8 mm voxels, 256 x 240 mm FoV,

TE/TR 2.24/2400 ms, 192 slices, bandwidth 210 Hz/Pixel, turbo factor 240, flip angle 8

deg, inversion non-selective (TI: 1060 ms)) for gray matter segmentation, cortical flatten-

ing, registration, and visualization for creating ROIs (details below).

105



4.2.5 fMRI processing

4.2.5.1 Preprocessing

During preprocessing of functional data, we align the brain across runs and account for

run- and session-specific distortions, with the aim of minimizing spatial transformations.

This allowed us to maximize signal to noise ratio and minimize smoothing, ensuring data

remains as near as possible to its original resolution. All preprocessing was done in Analy-

sis of Functional NeuroImages (AFNI, Cox, 1996).

First, we corrected functional images for intensity inhomogeneity induced by the high-

density receive coil by dividing all images by a smoothed bias field (15 mm FWHM), com-

puted as the ratio of signal in the receive field image acquired using the head coil to that

acquired using the in-bore ‘body’ coil.

Next, we estimated distortion and motion-correction parameters. To minimize the effect

of movement on the distortion correction (the distortion field depends on the exact po-

sition of the head in the main field), we collected multiple distortion scans throughout

the experiment. Thus, every two functional runs flanked the distortion scans used to es-

timate these parameters. We refer to the functional-distortion-functional scan as a mini-

session. For each mini-session, we used the distortion-correction procedure implemented in

afni_proc.py to estimate parameters necessary to undistort and motion-correct functional

images.

Then, we used the estimated distortion field, motion correction transform for each volume,

and functional-to-anatomical coregistration simultaneously to render functional data from

native acquisition space into unwarped, motion corrected, and coregistered anatomical
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space for each participant at the same voxel size as data acquisition in a single transfor-

mation and resampling step. For each voxel on each run, we linearly detrended activation.

We then computed percent signal change for each run.

4.2.5.2 Estimating delay-period activity

For each subject, we conducted a voxel-wise generalized linear model (GLM) to estimate

each voxel’s response to different trial events: precue, stimulus, delay, and response. The

BOLD activity of a single voxel was predicted from a convolution of a canonical model

of the hemodynamic impulse response function and a box-car regressor which had length

equal to each trial event. We used one predictor each across all trials for the precue, stim-

ulus, and response epochs. However, we defined a separate predictor for each trial for the

delay period, so that we could have single trial estimates of delay-period activity. Addi-

tionally, there were predictors to account for motion and intercept for each run. This GLM

was computed in AFNI.

4.2.6 Obtaining retinotopy

We used a recently developed population receptive field (pRF) mapping approach

(Mackey, Winawer, & Curtis, 2017), which combines other pRF mapping approaches

(Dumoulin & Wandell, 2008) with a more attentionally demanding task in order to map

topographic areas in occipital, parietal, and frontal cortex. The methods are briefly sum-

marized below; a more detailed description can be found in Mackey et al., 2017.
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4.2.6.1 Behavioral task

Participants completed a difficult, covert attention task to ensure that the visual stimuli

being presented were also being paid attention to. A trial consisted of three random dot

kinematograms (RDK; Williams & Sekuler, 1984; Fig. 4.2A) within three adjacent rect-

angles. The participant indicated with a button press which of the two flanker rectangles

contained dots moving in the same mean direction as the center rectangle. Importantly,

these three rectangles, which formed a vertical or horizontal bar, swept across the visual

field across the experiment, so that participants had to attend to the areas of the visual

field that contained visual stimuli.

4.2.6.2 Estimating pRF

The predicted response amplitude for each voxel at time t, r̂(t), was modeled by the fol-

lowing equation2:

r̂(t) = γ
[∫∫

S(x, y)N ((x, y), Iσ) dxdy
]n
, (4.1)

in which S is a binary stimulus image (1s where the stimulus was presented and 0s oth-

erwise), and N ((x, y), Iσ2) is a Normal distribution with mean (x, y) and variance Iσ2,

where I is a two-dimensional identity matrix. The parameters of this model are receptive

field center (x, y), standard deviation σ, amplitude γ, and compressive spatial summa-

tion factor n. Parameters were fit with a course grid search over parameters, followed by

2 A slight notation difference: In Mackey et al. (2017), γ is β. I switched it to decrease potential
confusion with the βs obtained through the GLM
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a local optimization method. Retinotopy estimates were used to define ROIs and estimate

location-specific delay-period activity.
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Figure 4.2 pRF-mapping schematics. A. The behavioral task used for pRF mapping. Participant
indicated with a button press which of the two flanker rectangles contained dots moving in the same
mean direction as the center rectangle. The rectangle configuration could sweep horizontally (as illus-
trated) or vertically. The dots within each rectangle moved orthogonal to the direction of the rectan-
gle movement B. Example brain. The colors indicate the estimated polar angle center of each voxel’s
pRF, which are used to define ROIs. C. This plot, modified from Mackey et al. (2017), demonstrates
that the estimated σ parameter increases across ROIs (as you move up the visual heirarchy and within
an ROI (as you increase visual eccentricity). This provides evidence that pRF estimates reflect known
characteristics of receptive fields of the visual system.

4.2.7 Defining ROIs

We used the estimated parameters acquired from the pRF mapping to define ROIs.

Specifically, we used the estimates of the polar angle and eccentricity each voxel was most

responsive to, as measured through the pRF model. We visualized flattened cortical sur-

face representations of each subject’s brain using AFNI and SUMA, and defined retino-

topic maps based on standard conventions (Larsson & Heeger, 2006; Wandell, Dumoulin,

& Brewer, 2007). We defined the following areas: V1, V2, V3, V3AB, IPS0, IPS1, IP2,

IPS3, iPCS, and sPCS (Figure 4.2B).
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In our analyses, we further restricted our ROIs based on pRF estimates. We excluded any

voxels that did not have over 10% variance explained from the pRF model, and we ex-

cluded voxels with RF centers smaller than 4 dva or greater than 20 dva eccentricity from

fixation.

Figure 4.2C is a modified figure from Mackey et al. (2017) demonstrating the sensible pRF

estimates. Estimated receptive fields are larger with increasing eccentricity and larger cor-

tical hierarchy.

4.2.8 Estimating item-specific delay-period BOLD activity

The goal of this study was to see if the priority of an item was reflected in the amplitude

of the neural population encoding that item’s location. This section summarizes how we

obtained an estimate for each item’s delay-period activity, using location estimates from

the pRF mapping and delay-period activity estimates from the GLM. Theoretically, this

measure weighs the delay-period activity of a voxel by its contribution to an item location.

For every item in every trial, we computed a pRF-weighted β,

βpRF = 1
N

N∑
i

wi(x)βi,

where wi(x) is the weight associated with the ith voxel at location x and βi is the GLM-

acquired delay-period β at voxel i. We define wi as the receptive field of the voxel, which

we model in accordance with the pRF models; each voxel’s receptive field is represented as

a non-normalized Gaussian with mean µi and variance σ2
i .
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wi(x) = e
−(x−µi)

2

2σ2
i .

This formulation wi(x) results in voxels that are “more tuned” to an item’s location to

have a higher weight. For example, when the location is at the voxel’s receptive field cen-

ter, or when x = µi, the weight wi = 1. As the distance between x and µi increases, this

weight decreases; the steepness with which it decreases is related to σi.

β ββ ...β = + + +1 2 nVoxelspRF

0

1

0.5

Figure 4.3 Schematic for calcuating item-specific delay-period amplitude, βpRF. We weight
the GLM-obtained estimate of delay-period activity for voxel i, βi, by its sensitivity to the location of
the current item (as estimated by the pRF model). The heat plot illustrates the estimated receptive
field over the entire stimulus display, a nonnormalized Gaussian distribution with a mode equivalent to
weight = 1. The corresponding weight for each voxel is the value at the item’s location, illustrated by
the white dot. Note that this schematic implies that βpRF is a sum, but it is actually a mean.

For each ROI, we conducted a repeated-measures ANOVA (rmANOVA) with priority as

the within-subjects factor and βpRF as the dependent variable.
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4.3 Results

4.3.1 Behavioral results

Error decreased with increasing priority. This effect was marginally significant when cor-

rected for violating sphericity (F (1.2, 12.4) = 3.53, p = 0.08, η2 = 0.16).

probe probability
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dv

a)
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Figure 4.4 Behavioral results. Final saccade error (M ± SEM across participants) decreases with
increasing priority.

4.3.2 Neuroimaging results

For each participant and ROI, I averaged the βpRFs corresponding to each priority across

trials. For each ROI, I conducted a repeated-measures ANOVA with the priority condition

as the within-subject variable and βpRF as the dependent variable. Because we assume the

data from each ROI is largely independent, we chose not to do a multiple correction to ac-

count for the multiple ANOVAs across ROIs3. Within each ROI, all post hoc tests were

adjusted for multiple comparisons, and we will report significance values before and after

3 This would not affect the results or interpretation
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a Bonferroni correction. We found an effect of priority on the delay-period activity of neu-

ral populations in visual areas, but not in parietal or frontal areas. All ANOVAs met the

assumption of sphericity, as tested through Mauchly’s test for sphericity.

4.3.2.1 V1

For visual area V1, there was a significant effect of priority on delay-period BOLD activity,

F (3, 30) = 18.04, p = 7 × 10−7, first column of Figure 4.5. Post hoc tests indicate that

the high priority (M ± SEM : −0.01 ± 0.01) was significantly higher than 0.3 (−0.03 ±

0.01, t(30) = −3.90, p = .002 (Bonferroni corrected p = .02)), 0.1 (−0.03 ± 0.01, t(30) =

−4.52, p = .0005 (.003)), and 0.0 (−0.04±0.01, t(30) = −7.28, p = 2×10−7 (1×10−6)). The

medium priority activity was significantly higher than 0.0 (t(30) = −3.38, p = 0.01 (.06)).

The low priority activity was higher than 0.0, but the significance did not survive multiple

comparisons (t(30) = −2.76, p = .05 (.3)).

4.3.2.2 V2

For visual area V2, there was a significant effect of priority on delay (F (3, 30) = 18.60, p =

5×10−7, first column of Figure 4.5). Post hoc tests indicated that the high priority (0.01±

0.01) was significantly higher than 0.3 (−0.01 ± 0.01, t(30) = −3.72p = .004 (.03) ), 0.1

(−0.02 ± 0.01, t(30) = −6.12p = 6 × 10−6 (3 × 10−5) ), and 0.0 (−0.03 ± 0.01, t(30) =

−6.73p = 1× 10−6 (6e− 6)). The medium priority activity was significantly higher than 0.0

(t(30) = −3.00p = .03 (.16)).
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4.3.2.3 V3

For visual area V3, there was a significant effect of priority on delay (F (3, 30) = 12.5, p =

2 × 10−5, third column of Figure 4.5). Post hoc tests indicated that the high priority

(0.01 ± 0.01) was significantly higher than 0.3 (−0.01 ± 0.01, t(30) = −3.2, p = .02 (.1)),

0.1 (−0.01 ± 0.01, t(30) = −4.2, p = .001 (.006)), and 0.0 (−0.02 ± 0.01, t(30) = −5.9, p =

1×10−5(6×10−5)). Additionally, the medium priority activity was significantly higher than

0.0 (t(30) = −2.8, p = .04 (.3)). Note that some of these analyses did not survive multiple

comparisons.

4.3.2.4 V3AB

For visual area V3AB, there was a significant effect of priority on delay (F (3, 30) =

5.87, p = .003, fourth column of Figure 4.5). Post hoc tests indicated that the high priority

(0.06 ± 0.01) was significantly higher than 0.3 (0.04 ± 0.01, t(30) = −3.04, p = 0.02 (.14)),

0.1 (0.04 ± 0.01, t(30) = −3.03, p = 0.02(.15)), and 0.0 (0.03 ± 0.01, t(30) = −3.91, p =

0.002(.02)). Only the comparison between 0.6 and 0.0 survived multiple comparisons.

4.3.2.5 IPS0-3, iPCS, sPCS

In all parietal and frontal ROIs, there was no effect of priority on delay-period activity, as

measured through the βpRF, p > .05, Figure 4.6.
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Figure 4.5 fMRI results in visual areas. Each column corresponds to a different ROI in visual cor-
tex. The first row illustrates the βpRFs as a function of priority. Individual participant averages are
shown in grey lines, and the group average is shown in black. There is an increase in βpRF with prior-
ity. The bottom row illustrates the trial BOLD signal (M ± SEM across trials), pRF-weighted in the
same fashion as the βpRF. The BOLDpRF traces diverge based on priority after the evoked response
associated with the cue onset.
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Figure 4.6 fMRI results in parietal and frontal areas. Each column corresponds to a different
ROI in parietal or frontal areas. The first row illustrates the βpRFs as a function of priority. Individual
participant averages are shown in grey lines, and the group average is shown in black. The bottom
row illustrates the trial BOLD signal (M ± SEM across trials), pRF-weighted in the same fashion as
the βpRF. There is no qualitative effect of priority on either the βpRF or BOLDpRF.
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4.4 Discussion

In this study, we asked how priority was represented in working memory. Specifically, we

hypothesized that an item’s priority would be represented through the gain of the same

neural populations that encode its location. To test this, we collected fMRI BOLD activ-

ity while participants completed a spatial delayed estimation task and analyzed the delay

period activity.

Behaviorally, error decreased with increasing priority, bearing resemblance to the results

in Ch. 2 and 3. We thus suspect the marginal significance was a result of low statistical

power; we had substantially less trials than in previous studies.

Neurally, we found that delay-period BOLD activity tracked priority in visual areas V1,

V2, V3, V3AB. These results are consistent with a subset of the literature investigating

the effects of set size on neural activity. Items are equally behaviorally relevant in set size

studies and thus the priority of each item is 1
N
, where N is the set size. With higher set

size, the priority of each item is lower. We can thus consider set size as an indirect prior-

ity manipulation. Increasing set size (i.e., decreasing priority per item) is associated with

a decrease in target reconstructions (Sprague, Ester, & Serences, 2014, 2016), activity in

monkey striate cortex (Landman, Spekreijse, & Lamme, 2003), and classifier accuracy

(Emrich, Riggall, Larocque, & Postle, 2013).

Priority, however, did not modulate delay activity in parietal and frontal areas. Across all

levels of priority, the amount of delay-period activity in populations tuned to the items

location was remarkably equivalent. This is not to imply that there is no maintenance,

there is clear delay-period activity (bottom row of Fig. 4.6). The results of this section
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might corroborate the larger subsection of the set size literature, showing that in fron-

toparietal areas neural activity seems to increase with increasing set size (Todd & Marois,

2004; Y. Xu & Chun, 2006; Sprague et al., 2014; Emrich et al., 2013; Braver et al., 1997).

Perhaps, within some limit, the addition of every item in memory comes with a somewhat

fixed amount of activity and thus higher set size would necessitate higher activity.

However, this result seems somewhat inconsistent with the notion of frontal and parietal

regions maintaining more goal-oriented information than visual areas and previous re-

search has shown strong attentional modulation in higher-level areas (Sreenivasan et al.,

2014; Curtis & D’Esposito, 2003; Kastner et al., 1999; Gouws et al., 2014; Serences & Yan-

tis, 2007; Somers et al., 1999). Why might we have found this result? Perhaps priority was

being used to create priority maps in visual areas, and did not need to be maintained af-

terward. There were 1.5 seconds between the precue onset and delay onset, which allowed

ample time for frontoparietal areas to modulate the activity of sensory areas. Once it has

successfully communicated goal-directed information, it may not need to maintain it any-

more. On the other hand, frontoparietal voxels may not be sensitive enough to location

for this analysis to work. The estimated σs in frontoparietal regions are extremely large

(and are noisier estimates). If voxels are not sensitive to location, then the βpRF will not

differ across items. Finally, priority could be maintained, but not through the amplitude

of the neural population. Perhaps the amount of activity in these regions is related to the

amount of top-down information. Each subpopulation would be holding a number (i.e.,

the priority), and thus may have different patterns of activity with the same overall ampli-

tude.
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4.4.1 Limitations and future directions

We all know Spidermans’s Uncle Ben’s famous words: “with every methodological choice

comes the responsibility of dealing with the limitations associated with it.”4 We think it is

important to state what our assumptions are and how, if at all, violations of these assump-

tions could affect the results.

One of the largest assumption we make in our analyses is that pRF estimates are stable

across time, independent of stimulus and priority configuration There is strong empirical

evidence that this assumption is violated. There are studies demonstrating that prior-

ity, through attention or set size manipulations, can affect pRFs by doing a combination

of changing the center, size, and gain (de Haas, Schwarzkopf, Anderson, & Rees, 2014;

Kay, Weiner, & Grill-Spector, 2015; Klein, Harvey, & Dumoulin, 2014; Sheremata & Sil-

ver, 2015; Vo, Sprague, & Serences, 2017). The effects of attention may differentially effect

different brain areas or even hemispheres (Klein et al., 2014; Sheremata & Silver, 2015).

Based on this result, it is possible that on every trial, the configurations of stimuli and,

more importantly, the priority associated with each, would sculpt the pRFs in different

ways. It is possible that our assumption leads to poorer estimates of what the delay-period

activity for each item would actually be. However, we do not believe the assumption could

cause the result we observed. Because we randomly picked the location of objects within

each quadrant and the priorities associated with each, any trial-specific fluctuations in

pRFs would averaged away across trials.

Additionally, we do not include two parameters from our pRF model of neural activity

(Eq. 4.1) when calculating the pRF-weighted delay-period activity: an amplitude γ and

4 This is definitely not what he said.
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compressive spatial summation factor n. The former accounts for differences in voxel ac-

tivity. We chose to exclude this because the GLM estimates also account for this, and we

didn’t want to “double up” on the same parameter. The latter parameter accounts for

the fact that stimulus-evoked responses grow nonlinearly with stimulus intensity (Kay,

Winawer, Mezer, & Wandell, 2013). Because for each trial, each estimate of item-specific

delay-period activity is summed across all voxels, the relative contribution with and with-

out this parameter would not change. However, the weighted average across voxels could,

in theory, be affected by this parameter. To investigate this, I plan to recalculate the esti-

mate of item-specific delay-period activity, βpRF, with these parameters.

4.4.2 Conclusions

We show first evidence of a truly graded representation of an item’s priority in the same

neural populations that maintain its location. We find this only in visual cortex, not in

higher-level areas, despite clear delay-period activity in these areas. These results provide

evidence that the distribution of WM resource according to priority sculpts the relative

gains of neural populations in visual areas that encode items. Furthermore, our results

demonstrate the existence of different representations across the processing heirarchy, sup-

porting their different roles. More generally, our result contribute evidence in favor of sen-

sory areas storing not only a point estimate of individual items, but some aspect related to

memory fidelity. We think this result is promising, and hope it serves as an exciting step

toward finding and disambiguating the neural mechanisms responsible for processing and

maintaining computational concepts such as priority, uncertainty, and precision.
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5 Conclusions

I’m going to the bathroom to read.

Elvis Presley
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5.0.1 Summary of dissertation

In Chapter 1, we asked if people could maintain and use a representation of uncertainty

in working memory. We tested this question by seeing if they used uncertainty in a four-

item orientation change detection task. We factorially compared models with different hy-

potheses about how items are encoded into memory, how observers believed their memory

was encoded, and their decision rule We found that an observer who correctly assumed

that their precision varied on an item-to-item and trial-to-trial basis fit the data best. A

model who assumed information was optimally combined performed slightly better than

one that assumed people didn’t. This chapter provides evidence of probabilistic computa-

tion in working memory.

In Chapter 2, we asked whether people used priority information when allocating resource

across items. We tested this question by using a four-item spatial delayed-estimation task,

where each item had a different priority. We found behaviorally that error decreased with

increasing priority, indicating that people allocated resource according to priority. We used

computational modeling to investigate participants’ allocation strategies, and found that

they were best fit by a model which assumes people are allocating resource to minimize a

function of estimation error.

In Chapter 3, we wanted to test the generalizability of the previous two chapters. We

investigated this by collecting a four-item memory-guided saccade task, with a post-

estimation wager. We found the following three behavioral results: error decreased with

increasing priority, indicating people were allocating resource according to priority; circle

size decreased with increasing priority, indicating people had lower uncertainty for higher

priority items; and these two values were correlated, indicating that people had an item-
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specific representation of uncertainty that reflected the precision with which items were

remembered. Computationally, we found that people set circle size consistent with an op-

timal model. Additionally, we found that participants allocated resource in order to min-

imize a function of estimation error, despite being incentivized to maximize points in the

post-estimation wager. These results suggest that our ability to use uncertainty informa-

tion is flexible across tasks, but allocation according to priority is less flexible. Future re-

search should investigate what affects the flexibility of resource allocation. Is it truly flexi-

ble?

In Chapter 4, we asked how priority was represented in the brain during a working mem-

ory delay. We tested this question by collecting BOLD activity while participants com-

pleted the same four-item memory-guided saccade task. We hypothesized that priority

would be represented in the delay-period amplitude of populations maintaining each item’s

location. We found this effect in visual areas, indicating that priority, and perhaps preci-

sion, is represented in the same populations that encode the item’s location. However, we

did not find this effect in parietal or frontal areas. Further analyses must be done to in-

vestigate whether and how priority is maintained in these areas. Either way, these results

provide some insight into how priority is represented in the brain, and highlight the differ-

ent representations and functional roles of sensory and higher level areas.

Overall, this thesis demonstrates two ways people compensate for having a limited-

resource working memory. One way is to know our memory fidelity, and make decisions

based on that knowledge. The another is to remember more important things better.
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5.0.2 Relation to broader literature

There are, of course, other strategies people are using to facilitate visual working memory.

There is evidence that people use statistical regularities of stimuli to remember items more

precisely (Brady & Tenenbaum, 2013; Brady, Konkle, & Alvarez, 2009; Victor & Conte,

2004). People can incorporate prior knowledge into their representations (Honig, Ma, &

Fougnie, 2018). People may use various compression strategies that, while potentially in-

ducing a bias, facilitate memory for more items (Nassar et al., 2018; Bays, Catalao, & Hu-

sain, 2009). (Although it could be argued, however, that these compression strategies are

not intentional, but a result of attraction and repulsion dynamics of different neural popu-

lations (Almeida, Barbosa, & Compte, 2015).)

It is possible that the specific methodological choices we made could have affected our re-

sults. For example, location is a special feature, indicated by the retinotopic structure of

the brain. Intuitively, it may be special because location is a necessary feature for all ob-

jects or because we bind different features to one object by their shared location. There

is some computational evidence that location is the linking feature between all other fea-

tures of an object (Schneegans & Bays, 2017). Would our results on priority generalize to

other features? Second, some argue that the strong delay-period activity shown in many

classical working memory tasks, which use oculomotor responses, could be driven by motor

planning, rather than working memory (e.g. Lundqvist, Herman, & Miller, 2018). Would a

different response modality affect our results in Chapter 4? Last, because we use a precue,

our effects in Chapter 2, 3, and 4 are a result of attentional allocation to perceptual stim-

uli, rather than a reallocation of resource to items already in working memory (e.g. Grif-

fin & Nobre, 2003). How would the behavioral and neural results change with a retrocue
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paradigm? Investigating how subtle changes in methodologies change results could help

illuminate how working memory information is processed and maintained for later use.

Finally, throughout this dissertation, I assume working memory is a stochastic, continu-

ous resource that can be shared across items. While there is considerable evidence within

this dissertation that memory fidelity fluctuates on an item-to-item basis (see model com-

parison results of Ch. 1 and behavioral correlation in Ch. 4), we do not make any claims

about whether the VP model is the best computational model to capture the data. In

fact, we recognize that the VP model is a tool to understand how information is processed

and used in working memory, but that it does not provide an explanation for how this pro-

cess works in the brain. The VP model’s unconstrained assumptions regarding resource

allocation were particularly appealing for Chapter 2 and 3, but alternative models such as

the Interference (Oberauer & Lin, 2017), Slots+Resources, or Slots+Averaging (Zhang &

Luck, 2008) models may additionally provide a good fit to the data. Future research could

investigate these models.

5.0.3 Conclusion

In everyday life, we are bombarded with information constantly, and we have to decide

what to look at, pay attention to, and remember. The studies within this dissertation pro-

vide evidence that people behave rationally in relation to their working memory limits.

First, we remember more important items better, in performance-related way. Second,

we are aware of and account for our item-specific memory fidelity when making working

memory decisions. Finally, the priority, and perhaps precision, of an item is represented

through the amplitude of delay-period activity in the same sensory populations that en-

code its location. The results of this dissertation demonstrate different ways in which we
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use task-relevant information to adjust how we encode information and make decisions in

working memory.
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